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Abstract— The standard optimal power flow (OPF) problem
minimizes generation costs over one study period assuming a
fixed system topology. The prospect of a smart grid incorporat-
ing extensive cyber capabilities enabling significant progress in
economic efficiency, reliability and environmental sustainability,
ought to transform the OPF problem accordingly. This paper
discusses the inclusion of tractable dynamic transmission topol-
ogy control in the OPF problem based on heuristic control poli-
cies derived from individual transmission “line profit” criteria.
Simulations on the IEEE 118-bus test system demonstrate the
effectiveness of the heuristic policies in reducing production costs.
As the algorithm’s requisite information to identify promising
candidate elements for switching is standard output of the
OPF solution, the computational effort is up to four orders of
magnitude better than dynamic transmission topology control
performance reported in the literature.

Index Terms— Transmission congestion, topology control,
transmission switching, optimal power flow, renewable integra-
tion.

I. INTRODUCTION

TRADITIONALLY, power system operational decision
making has been based on a static, exogenously fixed,

pre-contingency transmission topology. In fact, the standard
optimal power flow (OPF) problem is limited to the mini-
mization of generation costs over a single period subject to
exogenously-determined system loads, reserve requirements,
and system topology. National directives, such as the Na-
tional Energy Policy Act and the Energy Independence and
Security Act, seek to incorporate new technologies into the
energy grid with the aim of increased economic efficiency,
reliability and environmental sustainability. This suggests that
the formulation of the OPF problem should be transformed
to take advantage of the intelligence embedded in the smart
grid platform, and regard as flexible decision variables what
have thus far been considered problem parameters, e.g., loads,
reserve requirements, and transmission topology. The desirable
transformation should increase demand-side participation in
power markets on a par basis with dispatchable generation to
increase consumer welfare, provide valuable reserve capacity,
and reduce generation costs [1], [2], [3]. Large-scale integra-
tion of variable renewable generation will increase ancillary
service requirements [4], rendering reserve and regulation
requirements a function of volatile generation bids and demand
uncertainty [5]. Finally, dynamic control of the underlying
network topology, which is desirable under present conditions,
will be even more important under a future with flexible
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demand and significant volatile renewable generation. Incorpo-
rating transmission topology control in the OPF problem while
maintaining problem tractability is the topic of this paper.

Although optimal long-term transmission planning ad-
dresses reliability and production cost minimization, its time-
scale (years) is vastly different from that of transmission
topology control (hours), and, more importantly, the informa-
tion about the state of and requirements on the transmission
system are vastly different as well. Transmission planning aims
at allowing sufficient long-term capacity, including system
redundancies designed for reliability that are robust over
geographically-specific load and generation growth forecasts.
Transmission topology control responds to the revelation of
uncertainty handled in short-term markets that schedule gen-
eration and reserves on an hourly basis subject to transmission
constraints. The separate, and sometimes conflicting, goals
of transmission planning and economic dispatch result in
situations where lines built for reliability result in economic
inefficiency [6]. Khodaei et al. [7] present a transmission
switching coordinated expansion planning model in order to
link the two problems. Historically, due to the ability of
forecasters to accurately project seasonal-levels of generation
and load, there has been minimal energy transfer variability.
However, with the restructuring of markets and the impending
large-scale integration of renewable generation, this variation
is likely to dramatically increase.

The issue of branches impairing system performance was
first discussed in 1968 in a transportation network setting, and
is known as Braess’s Paradox [8]. Braess’s Paradox states that
an additional link in a transportation network can sometimes
increase congestion. This game-theoretic result occurs when
each user of the transportation network chooses their route
selfishly. This paradoxs undesirable congestion can be averted
by introducing a cost of using a joint resource or by routing
transportation network users centrally, the latter, resulting in
a traditional network max-flow problem. However, in AC
electricity transmission, flows are typically not routable1.
Instead, Kirchoff’s Laws determine power flows over transmis-
sion lines making congestion avoidance require out of merit
generation dispatch.

Corrective switching, including transmission line, bus-bar,
and shunt element switching, has been a topic of research
since the 1980s, typically considered as a means to deal with
line overloads and voltage violations either pre- [9] or post-
contingency [10], [11]. Other work incorporated transmission
topology control after solving the OPF problem, using the re-
sultant dispatch as a problem input to either reduce losses [12],

1Except for the few branches that have flow control devices, such as phase
shifters.
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[13] or line and transformer congestion [14]. Fisher et al. [15],
report that transmission topology control is already employed
by system operators to deal with contingency, voltage profile,
reactive power consumption, reliability and maintenance is-
sues. In fact, it appears that transmission switches are operated
for many reasons – except for economic ones.

Recently, dynamic optimization of transmission topology
within the OPF problem has become popular [15], [16], [17],
[18], [19]. Fisher et al. [15], [17] report 25% generation cost
savings through transmission topology control of the 118-
bus IEEE test system. They solved the mixed integer linear
program (MIP) dc optimal power flow (DCOPF) to near opti-
mality by using an iterative partitioning and parallel solution
approach. Their approach proved computationally expensive
with solution times in excess of 30 minutes without attaining
optimality, and is hence almost certain to be intractable for
real-size systems which often contain more than 10,000 buses.
However, Fisher et al. [15] found that the majority of cost
savings occurred as a result of removing relatively few lines.
What is believed to be a near optimal solution involved 38
open transmission lines. Yet 22% cost savings were achieved
by opening only 7 lines.

This paper presents an algorithm that improves the trans-
mission topology configuration relying on a set of heuristic
criteria grounded on the global marginal cost of congestion,
which is routinely estimated by the traditional OPF solution.
We use engineering judgment to translate the global marginal
cost of congestion to the small set of lines associated with
the lion’s share of cost savings. In addition, rather than solv-
ing iterative MIPs, we determine topology improvements by
iteratively solving the linear programming (LP) formulation of
the DCOPF, thus achieving economic efficiency with minimal
computational effort. Implementation on the IEEE 118-bus
test system shows that our heuristic algorithm decreases the
initial congestion cost by 2/3 with CPU times well below one
second.

The paper is organized as follows. Section II provides intu-
ition on the economic transmission topology control problem.
Section III formally presents the flow and dispatch models
and characterizes the congestion rent. Section IV discusses a
general structure for transmission topology control heuristics,
Section V presents our proposed heuristic, and Section VI
presents computational results on the IEEE 118-bus test net-
work. Section VII concludes and briefly describes the direction
of future work. The Appendix includes the implemented IEEE
118-bus test system generation model.

II. ECONOMIC TRANSMISSION TOPOLOGY CONTROL

The total transfer capability (TTC) between nodes (or areas,
zones) of a transmission system measures the ability of the
network to move power (MW) between nodes or groups of
nodes (areas) [20], [21]. TTC can be calculated using an OPF
approach [21], where the maximum amount of flow from a
source node or area to a sink node or area is computed,
analogous to the maximum network flow problem. However,
as previously mentioned, since power flow is dictated by
Kirchoff’s Laws, the TTC is less than the total transmission

capacity, defined as the aggregate thermal capacity of all lines
between the two nodes in the network. In fact, TTCs are
dependent on generation, customer demand, and transmission
system conditions for each time period.

Due to transmission limits, a strict merit-order dispatch of
generation resources is typically not feasible. Nodal prices,
computed using shadow prices revealed in the OPF, indicate
the marginal cost of providing power to that node, given
the costs of available generators and transmission network
constraints. Since losses are minimal in the high voltage
transmission network, the majority of the variation in nodal
prices is due to congestion pricing. Congestion prices result
when transmission constraints prevent lower cost generators
from being fully utilized. As a result, higher cost generation
needs to be dispatched to serve load.

Kirchoff’s Laws state that power flow along all paths
between two nodes are inversely proportional to the impedance
of each path. Therefore, congestion on one path can determine
the TTC between two nodes, even if excess thermal capacity
exists in all other paths. Lines that limit the TTC, and hence the
ability for economic dispatch, are potentially desirable to dis-
connect, while disconnected lines whose addition would yield
another path are potentially desirable to connect. However, it
is important to note that this problem is highly dynamic in
nature. Consider for instance a power control area with high
penetration of both wind and solar plants. These generation
sources will not be co-located and will be typically generating
during different times of the day, and be varying from day to
day. In addition, the location of loads changes as people go to
work in the morning and return home in the early evening. As
such, it is evident that optimal topology control is a dynamic
maximization as the nodes between which it is optimal to
increase the TTC change many times throughout the day.

III. POWER FLOWS, OPTIMAL DISPATCH, AND

CONGESTION MODELS

Consider a power system in which the linearized lossless
dc assumptions hold. This system has buses n = 1, . . . , N
and lines � = 1, . . . , L. Each line � is associated with an
ordered pair of nodes (m�, n�), with the convention that the
flow direction of line � is from node m� and to node n�. Let
bus N be the reference bus, which has voltage angle 0. Let
B̃ be the branch susceptance matrix, a diagonal matrix with
the line susceptances as its elements. Let A be the reduced
incidence matrix, an L× (N − 1) matrix which for each row
� has elements −1 and 1 in the columns corresponding to the
from and to nodes of line �, respectively, and 0 for all other
nodes, except for each line that is connected to the reference
bus, which only has an entry corresponding to the bus that is
not the reference bus. The reduced nodal susceptance matrix
B is given by

B = −A′B̃A. (1)

The nodal power balance equations, which state that the net
load at each bus equals the net line flow to the bus, can be
expressed in terms of the vector of power flows f on each
transmission line and A as

(l − p) = A′f , (2)
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where p and l are the vectors of nodal power generation and
loads, respectively. The power flow f on each transmission
line is

f = B̃Aθ, (3)

where θ is the vector of nodal voltage angles.
From (2) and (3), the well-known nodal power equations

are obtained,
(p − l) = Bθ. (4)

From (3) and (4), the power flows can be expressed as an
explicit function of the loads and generation,

f = B̃AB−1(p − l) (5)

= Ψ(p − l). (6)

The transmission sensitivity matrix Ψ [22], also known as the
injection shift factor matrix, gives the variations in flows due to
changes in the nodal injections, with the reference bus assumed
to ensure the real power balance. The shift factor matrix is a
function of the characteristics of the transmission elements and
of the state of the transmission switches. This dependence,
however, is usually not made explicit in OPF formulations,
since the assumption is that the transmission topology is fixed.

For a given point in time, the system operator dispatches the
committed units so as to minimize the total costs of operations.
Assume that the generation costs are piecewise linear, and
denote the vector of nodal generation variable costs in $/MWh
by c. The economic dispatch solved is a linearized lossless DC
OPF [23],

C = min
p

c′p (7)

s.t. 1′p = 1′l ↔ λ (8)

f ≤ Ψ(p − l) ≤ f ↔ μ,μ (9)

p ≤ p ≤ p ↔ γ,γ. (10)

Constraint (8) ensures the total load-generation balance, (9)
enforces the flow limits on transmission elements and flow-
gates, where lower limits usually represent the limit in the
opposite flow direction, and (10) models the lower and upper
generation limits. The nodal prices are given by

π = −(
λ1 + Ψ′(μ − μ)

)
. (11)

The marginal units are those that may change their output
at an optimal re-dispatch in response to a small variation of a
system parameter. They consist of the units that are dispatched
between their generating limits, and of those that are at the
limit but with the corresponding dual variables γ and γ equal
to 0. These units have their nodal prices equal to their costs,
and usually the number of marginal generators is equal to the
number of binding transmission constraints plus one.

As a benchmark, it is useful to consider the transmission-
unconstrained OPF, which has the same objective function as
(7)-(10), but does not enforce (9). Denote the optimal cost of
this OPF by C, where the underline indicates that C ≤ C. The
congestion cost is defined as the production cost increase due
to the transmission constraint enforcement, C − C.

In the lossless DCOPF, the congestion rent K, also called
merchandising surplus, is defined as the rent the system

operator obtains if each load pays its nodal price for its
consumption and each generator is paid the nodal price for
its production [24],

K := π′(l − p). (12)

The congestion rent is equal to the sum of the product of the
line flows times the shadow price of the line constraints,

K = −π′(p − l) (13)

=
(
λ1 + Ψ′(μ − μ)

)′(p− l) (14)

= (μ − μ)′Ψ(p − l) (15)

=
(
μ − μ

)′
f . (16)

Due to complementary slackness, the transmission shadow
prices are zero if the constraint is not binding, positive if the
upper constraint f ≤ f is binding and negative if the lower
constraint f ≥ f is binding. If the upper flow limits are positive
and the lower flow limits are negative, as is usually the case,
then the congestion rent is non-negative, from (16).

The congestion rent can be expressed in yet another useful
form, as the sum of the profit that each line makes under the
so-called admittance pricing schemes [25], [26], [27], i.e., the
sum of the product of line flows and price differentials between
nodes. Starting with (12) and using (2),

K = (l − p)′π (17)

= f ′Aπ (18)

=
∑

�

f� (πn�
− πm�

) . (19)

Note that while the congestion cost are usually positive, as
stated above, some lines may not be profitable. For these
unprofitable lines, the flow is from a higher price node to
a lower price node. As such, the flow on these lines are not
economic, but occur exclusively because flows are dictated by
Kirchoff’s Laws rather than simple transportation laws.

IV. ALGORITHM STRUCTURE

As discussed in Section I, current MIP implementations
for transmission topology control, while assuring good trans-
mission topology solutions and providing significant cost sav-
ings, are prohibitively computationally intensive. This section
presents a general algorithm structure for topology control
heuristics. The objective of the heuristics is to obtain improved
transmission topologies for production cost reduction with
little computational effort. The algorithm is specified in Fig.
1. This simple algorithm structure sequentially solves an OPF
and, given the OPF results, if the OPF is feasible, selects
a set of candidate switches to change status (infeasibility is
accounted for in the Step 3 check). Optimality is not guaran-
teed with this procedure, since there is no co-optimization of
dispatch and transmission topology, in contrast to [15]-[19].
However, this structure has the potential to attain high quality
switching and dispatch solutions with very low computational
effort, as will be exemplified in the next sections.

There are three characterizing elements for each heuristic
algorithm: i) the switching criteria for Step 1, ii) the switchable
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Step 1
Select candidate to change status

Update OPF problem

Step 2
Solve updated OPF problem

Step 0
Initialize i=0 and switchable set
Solve OPF and store solution

Revert to stored solution
Update switchable set

Step 3
Improved
Solution?

Stop
Store solution

Step 4
Stopping
Criteria?

Store solution
Update switchable set

i=i+1
Yes

No

Unmet

Met

Fig. 1. Flow chart describing general algorithm structure of economic trans-
mission topology control heuristics.

set update criteria for Steps 3 and 4, and iii) the stopping
criteria for Step 4. These criteria need to be specified.

The switching criteria can select one or more switches as
candidates to change status, and open or close these switches.
The selection can be made applying the same criteria in every
iteration, or by applying criteria that are a function of the
iteration number or of the results of previous iterations. The
criteria itself can take a number of forms, including the simple
use of OPF primal and dual solution variables for the selection,
or be based on the result of optimization problems.

The switchable set update criteria determines which
switches are allowed to change their states in the current
iteration. This update has two objectives: improve cost per-
formance and account for reliability requirements. A very
simple reliability requirement could be, for example, that the
number of lines connecting a certain node cannot be less than a
specified number. Regarding cost performance, some heuristics
may not change the status of a switch twice. Also, once a set
of switching candidates is found to perform poorly, this same
set is precluded from being used again in the next iteration but
may be allowed to change status in later iterations, depending
on the switchable set update criteria.

The stopping criteria determines the number of iterations
applied, and can include a number of conditions. Clearly,
the computations would stop if no lines meet the switching
criteria, or if the switchable set is empty. Additionally, the
algorithm may have a pre-set maximum number of iterations,
and/or maximum number of status changes. Further, it may
stop if cost reductions exceed a certain threshold, or if the
computation time is above a pre-defined limit.

Section V specifies a heuristic algorithm by providing
detailed rules for each one of these elements.

V. THE LINE PROFIT TRANSMISSION TOPOLOGY

CONTROL HEURISTIC

The proposed line profit transmission topology control
heuristic is named after the metric used in the switching

criteria. The characterizing elements of the heuristic are in
the following subsections.

A. Switching Criteria

In each iteration, the line profits, i.e., f� (πn�
− πm�

), are
computed. The most unprofitable line, if any, is selected as a
candidate for opening. Disconnecting any such line removes a
negative term from the summation in (19), thereby increasing
it. Considering that the optimal cost C resulting from the
solution of (7)-(10) can be expressed as the sum of the
load payments minus the generation gross margin minus the
congestion rent,

C = π′l − (π − c)′p−K, (20)

removing a negative term in K appears to reduce the produc-
tion costs, at least in an incremental sense. Next we show that
this is the case using two well-known sensitivities.

The power transfer distribution factor φmn
� , or PTDF, gives

the sensitivity of the flow on line � with respect to a power
transfer from node m to node n. The PTDF φmn

� can be
expressed in terms of shift factors as [23]

φmn
� = ψm

� − ψn
� . (21)

The term in (19) corresponding to line k satisfies

fk (πnk
− πmk

) = −fkAk

(
λ1 + Ψ′(μ − μ)

)
(22)

= −fkAkΨ′(μ − μ) (23)

= −fkφnkmk ′(μ − μ) (24)

= fkφmknk ′(μ − μ) (25)

= fk

∑
�

φmknk

� (μ� − μ
�
), (26)

where φmknk is the column vector of PTDF of all lines for
transactions from node mk to nk, i.e., for transactions in the
direction of line k, and Ak is the row in A corresponding to
line k. Thus, the profit each line makes is equal to the shadow
cost impacts a transaction in the direction of the line would
make on each binding constraint, multiplied by the line flow.

The line outage distribution factor ok
� , or LODF, gives the

sensitivity of the flow on line � with respect to a reduction in
the flow on line k. The LODF ok

� is given by [23]

ok
k = −1, (27)

ok
� =

φmknk

�

1 − φmknk

k

, � �= k, (28)

for φmknk

k �= 1, and is 0 for all � �= k if φmknk

k = 1. The
PTDF φmknk

k of line k for transactions from its from node to
its to node is positive and between 0 and 1, so that

1 − φmknk

k ≥ 0. (29)

The linear estimate of economic effects due to a line outage
is

fk

∑
�

ok
� (μ� − μ

�
) =

= fk

(
−(μk − μ

k
) +

∑
� �=k

φmknk

�

1 − φmknk

k

(μ� − μ
�
)
)
.(30)
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TABLE I

SIMULATION RESULTS SUMMARY: LINE PROFIT HEURISTIC PERFORMANCE

metric initial topology unconstrained line profit heuristic

unlimited i limited i reduced set pre-ordered

expected cost ($) 129, 598 ± 3550 117, 045 ± 3168 120, 926 ± 3243 121, 174 ± 3250 124, 045 ± 3360 120, 623 ± 3233

expected savings (%) n/a 9.49 ± 0.38 6.51 ± 0.20 6.29 ± 0.20 4.17 ± 0.18 6.73 ± 0.24

min / max savings (%) n/a 0.99 / 19.17 0.68 / 11.18 0.57 / 10.60 0.52 / 9.07 0.58 / 10.94

median / max iterations n/a n/a 41 / 68 15 / 15 33 / 47 15 / 15

lines disconnected (median) n/a n/a 16 8 17 9

expected computation time (s) 0.67 0.29 0.73 0.31

For non-binding lines, (μk − μ
k
) = 0, therefore

fk

∑
�

ok
� (μ� − μ

�
) =

fk (πnk
− πmk

)
1 − φmknk

k

. (31)

For all binding unprofitable lines, from (30), (31) and using
−1 ≤ ‖φmknk

k ‖,

fk

∑
�

ok
� (μ� − μ

�
) ≤ fk (πnk

− πmk
) < 0. (32)

As such, all unprofitable lines are lines whose outage would
lead to reduced production costs in an incremental sense.

Note that the line profit heuristic only opens closed
switches, it does not close open switches since line profits
cannot be computed for disconnected lines. Since flows and
prices are readily available from the solution of the DCOPF,
the switching criteria entail a negligible computational effort,
which provides a significant advantage when compared to
other methods in the literature.

B. Switchable Set Update Criteria

The switchable set is reduced in each iteration by removing
from it the most unprofitable switchable line, regardless of
whether removing the line leads to cost savings or not. Once
a line is removed from the switchable set, it is not reinstated
for the rest of the algorithm.

The switchable set update criteria also enforces a relaxed
form of the “n-1” reliability requirement, as follows: at no
point a load or generator bus is allowed to be served by less
than two lines. Thus, if in any iteration such a bus becomes
connected to the rest of the system by only two lines, then
these two lines are removed from the switchable set.

C. Stopping Criteria

Two stopping criteria are used. The “unlimited iterations”
criterion makes the heuristic stop searching when no switch-
able unprofitable lines are found. The “limited iterations”
criterion has an iteration limit I .

VI. SIMULATION RESULTS

The line profit heuristic was tested on the IEEE 118-bus
test system. This test system represents a portion of the AEP
network (in the Midwestern US) as of December, 1962. The
version of the test system employed is available at [28]. It
consists of 118 buses, 54 generators, and 194 branches, all of

which are connected. The load is 3,668 MW. The generation
economic characteristics developed for this test system are
detailed in the Appendix.

To study the performance of the line profit heuristic under
different system conditions, we maintain a fixed load and
perform a Monte Carlo simulation where the fuel costs and
the available wind generation are randomly varied. Fuel costs
are assumed to meet the condition that the cost of coal is
lower than the cost of natural gas which in turn is lower than
the cost of fuel oil. The coal price sample is taken from a
uniform distribution between 0.5 and 3 $/MBTU. The natural
gas price is drawn from a uniform distribution with an upper
limit of $10/MBTU and a lower limit of the maximum of
the coal price and $2/MBTU. The fuel oil price is drawn
from a uniform distribution with upper limit $12/MBTU and
a lower limit of the maximum of the natural gas price and
$5/MBTU. Wind units are dispatched at $0/MWh. Available
capacity of the wind power units is assumed to be uniformly
distributed between 0 and their rated capacity. The available
wind power of units within each of the following sets of buses
is assumed to be perfectly correlated: {10, 31}, {46, 70},
and {87, 103, 111}. The cross-correlation coefficient between
these sets is assumed to be 0.75, to model the effects of
geographic proximity.

The sample size used for the Monte Carlo simulation is
100. Two benchmark cases are used to evaluate the perfor-
mance of the heuristic: the case with initial topology and
the unconstrained case. The DCOPF with the initial topology
provides an upper bound for the production costs, and gives the
reference against which production cost savings are measured,
while the unconstrained DCOPF provides a lower bound
for production cost and an upper bound for production cost
savings with transmission topology control. The results for
these two benchmark cases are in the first two columns of
Table I. Note that the congestion costs, i.e., the maximum
attainable savings, are 9.49% of the production costs with the
initial topology. The initial transmission topology has between
1 and 4 lines binding for the samples taken, with an average
of 2.3 binding lines. Only 7 lines had limits binding in at least
one of the 100 samples with the initial topology. Thus, while
there are variations in the congestion patterns due to changes
in fuel costs and renewable generation, these variations are
moderate.

We implemented the line profit heuristic in Matlab, using
PowerWorld 15 as the DCOPF solver. The average production
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Fig. 2. Initial dispatch around line 25 → 23, one of the lines disconnected
most frequently. This line feeds the binding constraint 23 → 32.

costs reductions obtained were 6.51%, as detailed in the
third column of Table I. Thus, about 68.6% of the maximum
attainable savings were obtained with this heuristic. Note that
these maximum attainable savings are for the case with no
congestion. The savings magnitude leads us to suspect that the
transmission topologies attained with the line profit heuristic
are probably close, cost-wise, to the optimal topologies.

To gain insight on transmission topology control and how
the line profit heuristic works, let us consider the decision
to outage two of the most frequently disconnected lines. The
initial topology and dispatch focusing on line 25 → 23 are
shown in Fig. 2. Buses 25 and 26 have large natural gas-fired
generators that are fully dispatched. Power from these units
feed the binding line 23 → 32 through line 25 → 23. Line
25 → 23 is highly unprofitable, because it takes a significant
amount of flow (237 MW in the sample shown) from higher
price node 25 ($53/MWh) to lower cost node 23 ($37/MWh in
the sample shown). Opening this line in the sample considered
results in line 23 → 32 having excess capacity, while line
26 → 30, as well as another line downstream of it, become
binding. The savings obtained by opening this line are mainly
due to an increase in low cost generation at bus 89 (quite far
from bus 23, downstream of bus 24), and a reduction in higher
cost generation, including, counter to intuition, the plant at bus
26 which becomes a marginal unit.

The second most disconnected item turned out to be trans-
former 65 → 66. Let us consider the realized initial topology
and dispatch shown in Fig. 3. A fully dispatched coal unit
is connected to bus 69, while a marginal gas-fired unit is
connected to bus 65 (this unit controls the enforcement of
binding constraint 68 → 65). Also, a marginal coal-fired unit is
downstream of bus 77, in bus 89. The binding constraint 68 →
65 feeds the branches from bus 65 to buses 58, 66 and 64, all of
which are unprofitable, since they transfer flow from a binding
constraint to widely connected nodes. Transformer 65 → 66
tends to be the least profitable. Opening this transformer allows
the replacement of expensive generation from marginal unit
65 with lower cost generation from marginal unit 89. Note
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Fig. 3. Initial dispatch around transformer 65 → 66, one of the branches
disconnected most frequently. This transformer is fed by the binding constraint
68 → 65.
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Fig. 4. Average production costs as a function of the iteration number.

the marked differences between this line branch disconnection
and the previous one. The transformer disconnected is fed by
a binding constraint (rather than feeds the binding constraint),
and does not change the set of marginal units or the binding
constraints (the previous line changed both).

Fig. 4 shows the reduction in average costs as a function of
the iteration, normalized so that 1 refers to the average cost
with the initial topology, and 0 refers to the average cost with
no transmission congestion. As found in [15], most of the cost
reductions are realized in the first few iterations, and brought
by the change of status of a few switches.

The heuristic performance when at most 15 iterations are
allowed is shown in Table I in the “limited i” column. The
average production costs reductions were 6.29%. Hence, about
96.6% of the heuristic savings were obtained in the first
15 iterations. Fig. 5 shows, for each line, the number of
samples (out of the 100 samples) in which the line was
disconnected, with the lines reordered by decreasing number
of switchings. Note that six lines were switched in at least 74%
of the samples. These lines tended to be switched in the first
iterations, and bring the most savings. Also, note that only 16
switches are operated in more than 10% of the samples (if the
iterations are limited to 15). These results indicate that only
a relatively small portion of system switches would attain the
majority of production cost savings. Also, if there is a need
to upgrade switches or their controls for frequent operation,
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Fig. 5. Number of switching operations for the most switched lines; iterations
limited to 15.

perhaps only a few switches are worthwhile upgrading for
inclusion in the control algorithm.

If the six lines that bring the most savings were not allowed
to change status, the heuristic would still results 4.17% in
savings, as indicated in column “reduced set” of Table I. These
represent over 43% of the total available savings. Thus, while
it is affected, the performance of the heuristic does not fully
depend on being able to switch these six most-effective lines.

To analyze the path-dependency of the heuristic, instead
of selecting the most unprofitable line as a candidate for
switching, we pre-order the lines. For each iteration in the 100
samples, the most frequently switched line is selected as the
switching candidate for that iteration. If the line was already
selected as the candidate for a previous iteration, then the most
frequently switched line that was not chosen for a previous
iteration is selected. The results, for up-to 15 iterations, is
shown in the column labeled “pre-ordered” in Table I. Note
that due to the improved ordering of the candidate lines,
the savings, 6.74%, are higher than those obtained with the
unlimited iterations and not pre-ordered heuristic, and results
in an increase of 7% over those attained with the same number
of iteration and without the pre-ordering. Thus, we conclude
that for this test system the performance of the heuristic is
path-dependent and benefits from an improved ordering of
candidate lines, as one would suspect from the results in [15].
However, the improvements from the pre-ordering were not
very high.

The total computation time employed per sample averaged
0.67 seconds, on a Dell Latitude D620 laptop with a 1.83 GHz
Intel Centrino Duo processor and 2 GB of RAM. When the
iterations were limited to 15, the average computation time
was reduced to 0.29 seconds. Comparing the performance and
computational cost of this heuristic with any of the implemen-
tations presented in the literature, we note that the savings
attained are similar, while the computational cost is reduced
by 3 to 4 orders of magnitude. The significance of such
impressive computational effort savings is that with these short
computation times, economic transmission topology control
can be analyzed for realistic systems, as well as practically
included in computationally intensive problems that otherwise
may be prohibitively slow, such as unit commitment and
production simulation.

VII. CONCLUDING REMARKS

This paper has presented an algorithm structure for fast
transmission topology control heuristics, and the application
of the structure in the design of the “line profit” heuristic.
The heuristic disconnects the single line that is the most
unprofitable, which we show to reduce production costs in an
incremental sense. Simulation results on an implementation
of the IEEE 118-bus test system shows that the heuristic can
be very effective in lowering production costs, reducing the
initial congestion costs by 2/3 in this case. As the required
information to determine the line profit is readily available
from the OPF solution, the computational effort is very small,
with computational times up to four orders of magnitude lower
than the approaches in the literature.

Future work will take several directions, including the
design and analysis of other fast heuristics, the study of
transmission topology control impacts on nodal prices and
ancillary services needs, with the corresponding markets de-
sign implications, the effectiveness of transmission control
heuristic when applied to realistic, large-scale test systems,
and the inclusion of transmission topology control on complex
problems, such as unit commitment and operations planning.

APPENDIX

IEEE 118-BUS TEST SYSTEM ECONOMIC MODEL

SPECIFICATION

The IEEE 118-bus test system [28] consists of a power
flow with line limits but with no generation or load data
beyond a fixed dispatch. This section specifies the economic
model developed for the test system. The power flow has
54 generators. The 15 units negative real power dispatch are
assumed to be part of an end-user facility with self-generation,
and as such, are not assigned an economic model and their
dispatch is maintained. Units with zero dispatch in the original
power flow are assumed to be residual fuel oil-fired internal
combustion plants, with 10,000 BTU/kWh efficiency, 0 MW
min capacity and 20 MW maximum capacity. These units are
in buses 15, 18, 19, 32, 34, 36, 55, 56, 62, 74, 76, 77, 82,
85, 92, 104, 105 and 110. The remaining units are assigned
a unit type, fuel type, efficiency and minimum and maximum
capacities based loosely on their dispatch in the original power
flow. Fixed operation costs, as well as variable operation and
maintenance costs, are set to 0. The economic model is shown
in Table II. In the third column of this table, ST stands for
steam turbine, CC stands for combined cycle, JE stands for
jet engine, and WT stands for wind turbine.
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