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Abstract—We develop a market-based mechanism that en- increase as well [1]. Considering that today’s RS reserues a
ables a building Smart Microgrid Operator (SMO) to offer  procured simultaneously with energy, correspond to 1% of
regulation service reserves and meet the associated obligation load, and command market clearing prices comparable to

of fast response to commands issued by the wholesale market th . f ) in RS . ts without
Independent System Operator (ISO) who provides energy and € price or energy, an increase in requirements withou

purchases reserves. The proposed market-based mechanism@ commensurate increase in the supply of RS reserves may
allows the SMO to control the behavior of internal loads well be a show stopper for wind generation expansion. Since
through price signals and to provide feedback to the ISO. centralized generating units are today the only contributo
A regulation service reserves quantity is transacted between ¢ pg enabling buildings to offer RS and compete in the
the SMO and the I1SO for a relatively long period of time . . L .

(e.g., a one hour long time-scale). During this period the 1ISO POWer markets promises a major Contrlbu_tlop in terms of
repeatedly requests from the SMO to decrease or increase its affordable RS reserve cost and lower £€missions due to
consumption. We model the operational task of selecting an the associated adoption of clean generation.

optimal short time-scale dynamic pricing policy as a stochastic ~ \Wholesale power markets were introduced in the US in the
dynamic program that maximizes average SMO and ISO utility. - 3jq 19905 [2]. These markets clear simultaneously energy
We then formulate an associated non-linear programming static - ) S
problem that provides an upper bound on the optimal utility. and sgyeral types (_)f reserve requirements. For simpliaity i
We study an asymptotic regime in which this upper bound is €Xposition we consider here only RS reserves. Most markets
tight and the static policy provides an efficient approximation have not yet allowed the demand side to participate in
of the dynamic pricing policy. We demonstrate, verify and RS reserves. One of the I1SO’s, PJM, has allowed loads to
validate the proposed approach through a series of Monte Carlo participate in energy and reserve transactions since 28106 |

simulations of the controlled system time trajectories. . , . -
Index Terms— Electricity demand response, electricity regu- while other ISO’s are contemplating to follow suit. Of the

lation service, smart-grid, pricing, electricity markets, welfare ~ €Xisting short-term markets we point out briefly ([4], [5],

maximization, dynamic programming. [6], [7]) the: (i) day aheadmarkets that close at noon of
the previous day and clear energy and reserve bids for each
. INTRODUCTION of the 24 hours of the next day, (ii) hour aheadjustment

We address advanced demand control in next generatiamarkets that close an hour in advance and reveal energy and
intelligent buildings or neighborhoods that are (i) eq@dp reserve prices, and (i) 5-minuteal-timeeconomic dispatch
with a sub-metering and actuation capabteart-microgrid markets that determine actual ex post variable marginal cos
accessible by occupants as well as bysmart Microgrid of energy at each bus or node of the transmission system.
Operator (SMO)and (ii) connected to a cyber infrastructureWe assume that with the advent of tlsenart grid ([8],
enhancedsmart grid that can support close-to-real-time[9]) a Load Aggregator (LAWwill be able to participate in
power market transactions including participants corgetct power markets on a par basis with centralized generators. In
at the distribution level. In particular, we consider demhan particular we assume that a LA will be able to buy energy
control for offering capacity reserve ancillary serviceshie on an hourly basis at the corresponding clearing price and
Independent System Operator (IS®@ho clears short-term sell RS reserves for which it will be credited at the system
power markets. In this respect we note that five minute uRS clearing price. An 1ISO who procurd®, KW of RS is
and down capacity reserves, known Regulation Service entitled to consider it as a stand by increment or decrement
(RS)reserves, are important to meeting the required energy consumption that it can utilize at will in total or in part.
balance and preserving power system stability. As cleafmhe ISO may send commands to the RS provider to request
but alas intermittent and volatile, renewable generat®n ithat it modulates its consumption either up or down by an
increasingly integrated into the grid, RS reserve requéaet® amount that does not exceét),. These requests may arrive

) at inter-arrival times of 5 seconds or longer. To observe
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practical purposes energy neutral over the long time-safale time-scale (e.g., seconds to minutes) ISO requests for an
an hour and beyond. To meet the aforementioned contractuatrement or decrement of the building’s consumption. We
requirements, an SMO must be capable of controlling load#enote the event of an ISO request ag=i®rnal arrival(i.e.,
through the smart microgrid and a highagecision support external to the building). The termination of an ISO request
and communicatiotayer that interacts with users of energyis modeled as aexternal departureNote that the cumulative
in order to adapt their demand behaviors to ISO’s requestSO increment or decrement requests can not exdegar
The lower SMO layer consists of sensing and actuation com-R;, respectively. As mentioned, the SMO'’s response does
ponents that collect building state information and aetisat not have to be instantaneous. It must adhere, however, to a
as to safely implement goals determined at the higher levetsponse rate of roughl; /5 KW per minute. ISO requests
and authorized by building occupants. that are met by the SMO result in positive utility. In additjo
This paper focuses expressly on providing the highen its periodic 5 minute system re-dispatch, the ISO typycal
decision support layer with a virtual market that operateattempts to reset its cumulative increment or decrement
on the building side of the meter for the purpose of elicitingequests to zero in order to enable RS providers to respond to
a collaborative response of building occupants. Our object new requests during future inter-dispatch 5 minute periods
is to derive an optimal SMQricing or incentive policy This suggests that the long time-scale average deviation of
towards building occupants so that they consent to the sabeilding consumption from its? level equals zero. Hence,
of RS reserves to the 1ISO and collaborate in meeting 1SOthe sale of RS reserves has an energy neutral impact on long
RS utilization requirements. To the best of our knowledgdjme-scale building consumption.
little relevant work has been published, and we are the first The primary objective is to maximize the sum of SMO and
to propose such a market based policy for demand contrt$O welfare associated with internal and external arrivals
aiming at the provision of RS reserves. MethodologicallyHard and soft constraints are added to model adherence
related techniques have been used in pricing Internet sdo the contractual requirements and long time-scale energy
vices [10], [11]. In Sec. II, we detail our internal marketneutrality described above. To achieve these goals, the SMO
based model and formulate a related welfare maximizatiozontrols the active internal loads and external requests by
problem. In Sec. lll we cast the problem intoDynamic communicating external and internal-class-speciiiices
Programming (DP¥ramework to obtain the optimal dynamic that may be interpreted as dynamic demand control and RS
policy. We then proceed to develop performance bounds amdtivation feedback signals as much as a monetary exchange.
approximations. In Sec. IV we develop a static policy and We assumelM classes of internal loads = 1,..., M,
in Sec. V we derive an easily computable upper bound othat arrive according to a Poisson process and require
the optimal performance. Based on this bound, we establi$t\W for an exponentially distributed period with rate. Let
in Sec. VI the asymptotic optimality of the static policy asy = (p1, ..., 1ar). Each internal arrival of class pays an
the load class specific consumption level becomes small8MO determined prices;; we defineu = (uy,...,uar).
with a commensurate increase in the number of activdle assume that the arrival rate of claskads is a known
loads. Further, we extend the asymptotic optimality resuliddemand function\;(u;) which depends om; and satisfies
to account for constraints that model energy neutralityr oveAssumption A below. We denote the numberaafive class
the long time-scale and the upper limit in the RS delivery internal loads at time by n;(t), i = 1,..., M, and define
requested by the 1SO . We present numerical results IN(t) = (ni(t),...,na(t)).

Sec. VII, and conclude in Sec. VIII. )
Assumption A

Il. PROBLEM FORMULATION For every i, there exists a price:; max beyond which the

This section models the short time-scale interaction CQemanq Ai(ui). becomes zero. Furthermgre, .the function
the SMO with microgrid occupants/loads and the 1SO inti(wi) is continuous and strictly decreasing in the range
conjunction with RS reserves. u; € [0, Uj,max]-

The SMO can sellR, KW of regulation service for the S5O requests for the dynamic activation of RS reserves are
duration of the long time-scale (e.g., one hour), provideghodeled as a special external class. External RS activation
Fhat its microgrid’s average consumptiaR, exceedsk;, and requests occur at a ratéy) wherey is an SMO set price and
its consumption capacity is at lea&t+ R;. We envision ;) satisfies Assumption B below. While they are active,
microgrid load classes that can be potentially active drineyternal arrivals require, KW each. They become inactive
the relevant long time period to include, among othersfigh ypon their departure which follows an exponential distribu
HVAC zones, computers, electrical appliances and the likgon with rate d. Denoting the number of active external
We denote the event of a load unit becoming active as &jass |oads at time by m(t), we can express the request
internal arrival (i.e., internal to the building) and associate &g, increased or decreased building energy consumption as
class-specific electricity demand increment with eactvalri R+ Ry, —m(t)r.. We impose the following two constraints:

We similarly denote the event of a load unit becoming M
inactive as amnternal departure An actively consuming load  N(¢)'r + m(t)r, = Z ni(t)r; + m(t)re < R+ Ry, (1)
unit derives a positive utility. With the sale dt;, KW of =1

RS the SMO agrees to be on standby and respond to short m(t)re < 2Ry, (2)



where prime denotes transpose. Inequality (1) ensures thag_ /T aly(t)E[Y]Y > y(t)dt
at any timet the total capacity usage of all active loads 0o -

does not exceed the maximal building consumption capacity. T M

Inequality (2) ensures that the ISO can not request that '[he*/0 P<(R+ Rh) - (Z”i(t)ri +m(t)7”e)>dt} 3)
average building consumptidR be increased beyond+ R, i=1

or decreased below — R),. Due to Assumption A and B, functions;(u;) anda(y)

have inverse functions which we denotedy ;) andy(a),
Assumption B respectively. The inverse functions are defined@m\; y.x]
There exists a pricm., beyond which the demandy) and [0,ao], respectively, and are continuous and strictly
becomes zero. Furthermore, the functiofy) is continuous decreasing. This allows us to use the arrival ratesind a
and strictly decreasing in the rangge€ [0, Ymax]- as the SMO's decision variables and write the instantaneous

reward rates as;E[U;|U; > u;(A;)] andaE[YY > y(a)].

To render the proposed constrained welfare maximization

problem more meaningful, we first detail the arrival models I1l. DYNAMIC PROGRAMMING FORMULATION
and the underlying demand functions. An arrival of an The problem introduced in Sec. Il is in fact a finite-state,
internal load of class generates utilityl;, where U; is  continuous-time, average reward DP problem. Note that the
a non-negative random variable taking values in the ranget {7, %} = {(u0,y)|0 < w; < Uimax; V5 Y < Ymax}
[0,u; max] With @& continuous probability density function is compact and that all states communicate assuring that
fi(u;). Arrivals of internal class loads are a fraction gfo-  there exists a (proper) policy that is associated with finite
tential classi arrivals generated according to a Poisson prdfirst passage time from any stat®, m) to any other state
cess with constant rat®; ... A potential arrival becomes (N’,m’). Standard DP theory results assert that an optimal
a real arrival if and only if the random utility realization, stationary policy exists [12].
U;, exceeds the SMO set prieg. This implies that internal ~ Since the procesgN(t),m(t)) is a continuous-time
class: arrivals occur according to a randomly modulatedMarkov chain and the total transition rate out of any state is
Poisson process with ratg (u;(t)) = A maxP[U; > u;(t)]. bounded by = Zf\il(/\i,maﬁuif(R+Rh)/7ﬂ)+(amax+
Furthermore, the expected utility conditioned on the faett d[(R+2Ry)/r.]), we can uniformize this Markov chain and
a potential arrival has been accepted under a current pfice @derive the following Bellman equation [12]:
u;, is equal taE[U;|U; > u;]. We therefore con_gluQe that the 7= | h(N,m) = max [ Z X (u)E[U;|U; > ws)
expected long-term average rate at which utility is gereerat ue%

. . . . 1€C(N,m)
by the arrival of internal loads is given by: /
1 M T +1D(N,m)a(y)E[Y|Y > y]7P<(R + Rh)f(N r-+ mTa))
i 7 3| [ n OB, > w0 . v
T—»ooT; 0 + Z(UZ)h(N+ei,WL)+Znzuzh(N—ei,nl)
Following a similar argument, the welfare generated from icc(N,M) v i1 Y
external RS class arrivals can be expressed as: d
1 T P + lD(N,m)@h(N,m + 1) + mTh(N,m - 1)
lim —E t > |
Jin 28| [ a)BvIY > o), (s M S
where Y stands for the welfare from the admission of a oy Y ~ v
potential external RS arrival, and(y(t)) = amaxP[Y > ' ' ';(w md
y(t)] wherean,.x is the maximal arrival rate of the external — 1D(N,m)7 — T)h(N,m)] (4)

RS class. An interesting interpretation of the long-ter
average utility generated by external RS class arrivalhas t
it represents the reservation reward level that the ISO tnig

beFmgll?g tr%c%?lyttr?aet Sb't\figi;m fiﬁ%fiﬁiﬁf?éo RSRh’ (m+1)r. < 2Ry} describe the conditions under which
Y, Tece g response elxternal RS class arrivals can be admitted to the system, and
requests implies that .th? mod|f|eq bundlng load must equaid denotes the indicator of some set The above Bellman
gzu:; ]Tr? _z;llc(jt)v:ee. i';]hl(s)slz :ﬁei\é?llgw?ﬁmpgigﬁe_ by energy equation has a unique solutioff andh(-) for an arbitrarily
ping. P ap y: selected special state, s@yat which we specify the value

T M . . .
of the differential cost function, for examplg0) = 0 [12].
Pl (R+ Rn)— i(t)r; t)re ) )dt], : .
/0 (( + ) (;n rs+m{t)r )) The scalar/* stands for the optimal expected social welfare

"Here, C(N,m) = {i|(N + ;) r + mr. < R+ R} is the
et of internal class arrivals that can be admitted in state
’?N,m), D(N,m) ={(N,m) | Nr+ (m+ l)r. < R+

1
lim —E

T—o0

where P(-) denotes the penalty function. We make specifi®€" unit andh(N,m) denotes the re.Iative. reward in state
assumptions otP(z) later. N,m). Solution of Bellman’s equation yields an optimal

The optimal pricing policy can now be described as th&0licY that maps any stat@N, m) to the optimal price vector
arg max Of: (u,y) that maximizes the right-hand side of Equation (4).
M7 Unfortunately, thecurse of dimensionalitystipulates that
lim 1[5{2 / Ni(wi () E[U;|U; > ug(t))dt Bellman’s equation is only solvable for a small state space.
T—oc T [~ Jo - We therefore seek a near optimal solution that is applictble



SMO'’s managing relatively large buildings or neighborhsod
with a large population of internal loads.

IV. STATIC PRICING PoLiCcY
We consider astatic pricing policy, namely a fixed price

Proposition V.11f the functionsF;(\;) and G(a) are con-
cave andP(-) is convex, thew* < Jyp.

Proof: The proof is similar to a result in [10] and is
omitted. m

vector (u,y) independent of the system state, for two The optimal solution of NLP (7) provides an upper bound
reasons: (1) the computation effort of solving for optimafor the optimal social welfare. Moreover, if the objective
dynamic prices increases exponentially in the number d#nction of (7) is concave, the NLP is very easy to solve.

classes and active loads, and (2) good static prices can
constructed tractably and under reasonable conditiombkttea

reasonable behaved provision of RS. Indeed, under a static

pricing policy (u,y), the system evolves as a continuous-
time Markov chaln with corresponding average welfare:

Z Ai(us)E[U; (Ui = ] (1 - IEDIioss[(u-a y)])
+a(y)E [YIY > Y] (1 — Qioss (1, )])

E{ ((R+ R - an,+mw )}

®)

be VI

In this section, we consider an asymptotic regime and

A SYMPTOTIC BEHAVIOR

discuss how to derive the optimal policy while satisfying
additional system behavior requirements.

A. Many Small Loads

If R and R;, are large relative to the required power of
a typical arrival, we expect that the laws of large numbers
will dominate, attenuate statistical fluctuations, andwlls
to carry out an essential deterministic analysis. To capéur
situation of this nature, we start with a base system charact

where Pj[(u,y)] denotes the steady-state probabilityized by finite capacity? and R;, and finite demand functions

P[N'r+r;+mr. > R+ Ry] that an internal classarrival is
rejected, anddi . J(u,
P[N'r 4+ (m+ 1)r. > R+ Ry, or (m+ 1)r. > 2R;] that an

external RS class arrival is rejected. Moreover, the exbct

penalty cost is also given by the steady-state probabilifemand functions\¢(u;),

associated with the same static poliay, y).
The optimal static welfare is defined by
max

J((u,y)),
(wy)e{w .2} ((w9)
and the following proposition holds.

(6)

Proposition IV.1 J, < J*.

V. OPTIMAL PERFORMANCEUPPERBOUND

In this section we develop an upper bound.fhand use
it to quantify the suboptimality of the static policy.
Using the inverse demand functions();), and inter-

nal class: arrival rate )\;, the instantaneous reward rate

is Fz(/\z) = )\ZE[UZ|UZ > uz()\l)] Slmllarly, G(y) =
aE[Y]Y > y(a)]. Assume that the functionB; and G are

concave Let Jy, be the optimal value of the followinljon-
Linear Programming (NLPproblem:
max > Fi(\) + Gla) 7)
—P(R—i—Rh Znn—i—mre)
s.t. Ai = wing, Vi
a=dm

Znim +mr. < R+ Ry,

K3
mre < 2Ry,.

Remark:The non-negativity constraints, > 0 andm > 0
are ignored here. Notice that the departure rateandd are
positive, and the arrival ratels; anda are also non negative
by definition. Thusn; and m are also non-negative under
well-defineddemand functions.

Ai(u;). We then scale the system through a proportional

y)] denotes the steady-state probabilityincrease of capacity and demand.

More specifically, let > 1 be a scaling factor. The scaled
system has resourcé&’+ RS, with R°+ R, = cR+cR),, and
a$(y;) given by Af(u;) = cAi(u;)
anda‘(y) = ca(y). Note that the other parameters 1;, and
re, d are held fixed. We will use a superscriptto denote
various quantities of interest in the scaled system.

In this case, consider the NLP problem (7). The upper
boundJ¢, is obtained by maximizing

ZC)\i(Ui)E[Ui|Ui > ui] + ca(y)E[Y]Y > y]

—P((eR+ i) — (3 2y ),

- d
—C’\L(?‘i)ri+ —C“C(ly) re < cR+cRy,

chi(u

i

ca

T’i+

subject to the constrainfs’,
and %ﬁy)re < 2cRy,.

It can seen that, if the penalty functioR(-) is lin-
ear, then the optimal solution for (7), denoted tuy,
s Uy ) @ndyz,, is independent of, and J;,

(“Zb,p .
chb.

We summarize in the following assumption the property
of the penalty function.

Assumption C
P(Kz) = Kz for someK > 0.

We summarize the above result as follows:

Proposition V1.1 Under Assumption C, the optimal objective
value of (7) in the scaled system increases linearly wjth
e, JS = chb.

We are interested in determining the gap between the two
bounds derived in Sec. IV and Sec. V. We show that in the
regime of many small users, the following result holds:



1 T2 T
R + Rh S Al,maxi + >\2,max7 + amaxi;
M1 U2 d

Theorem VI.2 Assume that functions;()\;) and G(a) are
1 T2 (11)

concave, and Assumptions A, B, and C hold. Then,
R < /\1,max_ + )\27max_
M2

lim lJS" = lim lJ*"C = lim 1Jib. (8) M1

e c e c crec Under conditions (11), the optimal social welfare is:
Proof: The proof is omitted due to space limitations. 2
| 1 (Al,lnax;_ll + )\2,111;1)(;_22 + amax% - (R + Rh))

In the next two subsections, while staying in the regime — 5
of many small loads, we extend the asymptotic optimality
results to accommodate additional system behavior require
ments.

2
Qmax | T2
Ymax  d?

2

2 2
)\l,max s + A2, max .3
U2 max 1251

U1, max Mf

1
5)\1,maxu1,max + 5)\2,Irlaxu2,max + §arnaxymax~ (12)

. We summarize the above result as follows:
B. Energy Neutrality
We impose energy neutrality, i.e., require the long-termproposition VI.3 Given (11), in the regime of many small
average cumulative active requests of the external RS clagads, the long-term average of active requests of the eater

to equalR,. We show that energy neutrality can be achievegks class isk;,, and the optimal performance is given by (12).
if the SMO can appropriately influence the demand function

of the RS class.

We assume linear demand(u;) = \; max(1 — u"a )
and a(y) = amax(1 — —£—). Suppose that the welfarg;
is uniformly distributedmgn[o,ui,max] and Y is uniformly
distributed on[0, Ymax]- Then, F;(A;) = t; max(Ai — A7 )

2Xi max
2 .
and G(a) = ymax(a — 57=—) are concave in\; and a,
respectively.

The NLP (7) can now be written as:

22 a®
min — zi:ui7max()‘i - 2)\1_,;%) ~ Ymax(a 2anlax)
+ K ((R+ Ra) — (Z 2—7“ +37))
sit. Z %n + %re < R+ Ry,
%;e < 2Ry. ®)

For ease of exposition but without loss of generality,

VII.

In this section, we report numerical experiments that yerif
and validate our results.

Assume that the SMO can support a maximal consumption
of 1200 KW with R = 1000 KW and R, = 200 KW.
This consumption is consistent with the Boston University
(BU) Photonics building housing the office of the first two
co-authors. Consider two internal classes characterized b
(all arrival rates are in arrivals/minute and departureesat
in departures/minute)A; (u1) = 1600 — 80u1, A2(uz) =
800 — 80ug, U1 max = 20, U2 max = 10, A max = 1600,
Aomax = 800,71 = 2 KW, 75 = 1 KW, 1y = 1, pg = 2. The
RS class arrival rate ist(y) = 1000(1 — y/Ymax) With Ymax
to be determinedg,.x = 1000, 7. = 1 KW, d = 2. The
penalty function has a slope @& = 1000. Assume that the
social welfareU; is uniformly distributed on0, u; max] and
Y is uniformly distributed on0, y; max]. With these values

N UMERICAL EXPERIMENTS

W&ve can solve the NLP problem (9) and obtain asymptotically

consider next a system involving 2 internal and 1 externqutimm static prices.

RS class.

Consider a typical regulation service cycle consisting of

Note that the NLP problem (9) can be re-formulated intqee 5-minute periods. Each cycle starts with a full RS

the following Quadratic Programming (QPproblem:

U1, max

1 /\l,max >\1
. U2, max
min 5[)\1 A2 al Xo s A2
Ymax a
Amax
T
17;_11 — U1, max )\1
+ _Kl_z — U2, max A2
*K% — Omax a
A
i A M R+R
st |moomz A< bl (10)
e a 2Ry,

The dual of (10) is also a QP problem. We denote th

optimal solution of the primal QP (10) b§At, A3, a*), and
the optimal solution of the dual QP Ky7, ¢3).

standby state, namely, with all RS active loads totalling
Ry,. This is the result of the ISO 5 minute dispatch which
we model by tuning the value of,... In the following
two periods within the cycle, ISO requests are modeled as
random samples from a uniform distribution oviér 2R},]
which are instantiated by setting the corresponding vafue o
Ymax- This random cycle is statistically neutral over the long
time-scale. In this experimeny,,., changes every 5 minutes
and the SMO must control internal class loads to meet ISO
requests within the 5 minute requirement of RS reserves.
By formulating and solving the NLP problem (9) at the
Beginning of every period, the SMO is able to appropriately
set the prices that result in the required arrivals of iraérn
classes. We simulate the system for the long time-scale of

Under energy neutrality, the long-term average of activgne oy consisting of 12 periods of 5 minutes each and

external RS class requests 1%,, i.e., r.a*/d = Rj. By

complementary slackness, we have the following optimality

conditions: . .
1 dRh )\l,maxﬂ_ll + )\2,max#_22 - R Te
(1= e S = S
a,max ’I“e 1,max _12 + 2,max 22
2

5

Ul max [T U2 max

report the results below.

The steady-state arrival rates for the two internal classes
and the RS class in these periods are shown in Tab. I. The
evolution of the total consumption due to internal loads and

the total load of the RS class are shown in Fig. 1. Note



TABLE |

THE ARRIVAL RATES OF INTERNAL CLASSES AND THERS CLASS. 500 T
450~ A | b
Period Internal class 1 Internal class 2 RS class '." —— Q}ﬂg\‘ L 15
Tl i N
1 376 494 400 Mhm 1 Wy
2 409 502 258 ) by \ ! LAl |
3 346 486 527 z il 1
4 376 494 400 -
5 309 477 683 2
6 409 502 257 i
7 376 494 400 5
8 322 480 630 g
9 445 511 106 5
10 376 494 400
11 403 500 286
12 321 480 635
0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60
1200 —— TR R PR VLT — time
1000/ | Fig. 2. Number of active internal loads and active RS requests
ool KWint, Loads of electric energy, but also in the provision of fast reserve
£ In this paper we develop and test a market based approach
N g MO En O for a Smart Microgrid Operator (SMO) to control numerous
& ool rg+Zin |
g =0, and diverse loads and provide such services. We start by
: — e formulating a detailed dynamic optimal control problem and
400 = . . .
‘ WRS R m/\ then derive an associated tractable and yet near optimal non
; fﬁ ‘ W’W linear optimization model that is capable of determininghbo
2“"/‘”% \ ”/W\’\ I short term (at the minutes time-scale) operational detisio
¥ support to the SMO as well as longer time-scale transaction
% 1 % ES a0 5 % guantities (at the hourly time-scale). Our model is elatesta
fime and validated by numerical simulation results.
Fig. 1. Energy consumption by internal classes and activeeRSersts. REFERENCES
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