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Abstract— We develop a market-based mechanism that en-
ables a building Smart Microgrid Operator (SMO) to offer
regulation service reserves and meet the associated obligation
of fast response to commands issued by the wholesale market
Independent System Operator (ISO) who provides energy and
purchases reserves. The proposed market-based mechanism
allows the SMO to control the behavior of internal loads
through price signals and to provide feedback to the ISO.
A regulation service reserves quantity is transacted between
the SMO and the ISO for a relatively long period of time
(e.g., a one hour long time-scale). During this period the ISO
repeatedly requests from the SMO to decrease or increase its
consumption. We model the operational task of selecting an
optimal short time-scale dynamic pricing policy as a stochastic
dynamic program that maximizes average SMO and ISO utility.
We then formulate an associated non-linear programming static
problem that provides an upper bound on the optimal utility.
We study an asymptotic regime in which this upper bound is
tight and the static policy provides an efficient approximation
of the dynamic pricing policy. We demonstrate, verify and
validate the proposed approach through a series of Monte Carlo
simulations of the controlled system time trajectories.

Index Terms— Electricity demand response, electricity regu-
lation service, smart-grid, pricing, electricity markets, welfare
maximization, dynamic programming.

I. I NTRODUCTION

We address advanced demand control in next generation
intelligent buildings or neighborhoods that are (i) equipped
with a sub-metering and actuation capablesmart-microgrid
accessible by occupants as well as by aSmart Microgrid
Operator (SMO), and (ii) connected to a cyber infrastructure
enhancedsmart grid that can support close-to-real-time
power market transactions including participants connected
at the distribution level. In particular, we consider demand
control for offering capacity reserve ancillary services to the
Independent System Operator (ISO)who clears short-term
power markets. In this respect we note that five minute up
and down capacity reserves, known asRegulation Service
(RS)reserves, are important to meeting the required energy
balance and preserving power system stability. As clean,
but alas intermittent and volatile, renewable generation is
increasingly integrated into the grid, RS reserve requirements
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increase as well [1]. Considering that today’s RS reserves are
procured simultaneously with energy, correspond to 1% of
load, and command market clearing prices comparable to
the price of energy, an increase in RS requirements without
a commensurate increase in the supply of RS reserves may
well be a show stopper for wind generation expansion. Since
centralized generating units are today the only contributor
of RS, enabling buildings to offer RS and compete in the
power markets promises a major contribution in terms of
affordable RS reserve cost and lower CO2 emissions due to
the associated adoption of clean generation.

Wholesale power markets were introduced in the US in the
mid 1990’s [2]. These markets clear simultaneously energy
and several types of reserve requirements. For simplicity in
exposition we consider here only RS reserves. Most markets
have not yet allowed the demand side to participate in
RS reserves. One of the ISO’s, PJM, has allowed loads to
participate in energy and reserve transactions since 2006 [3],
while other ISO’s are contemplating to follow suit. Of the
existing short-term markets we point out briefly ([4], [5],
[6], [7]) the: (i) day aheadmarkets that close at noon of
the previous day and clear energy and reserve bids for each
of the 24 hours of the next day, (ii) hour aheadadjustment
markets that close an hour in advance and reveal energy and
reserve prices, and (iii) 5-minutereal-timeeconomic dispatch
markets that determine actual ex post variable marginal cost
of energy at each bus or node of the transmission system.
We assume that with the advent of thesmart grid ([8],
[9]) a Load Aggregator (LA)will be able to participate in
power markets on a par basis with centralized generators. In
particular we assume that a LA will be able to buy energy
on an hourly basis at the corresponding clearing price and
sell RS reserves for which it will be credited at the system
RS clearing price. An ISO who procuresRh KW of RS is
entitled to consider it as a stand by increment or decrement
of consumption that it can utilize at will in total or in part.
The ISO may send commands to the RS provider to request
that it modulates its consumption either up or down by an
amount that does not exceedRh. These requests may arrive
at inter-arrival times of 5 seconds or longer. To observe
RS reserve contractual obligations, the RS provider must
deliver the requested increase or decrease in its load with
a ramp rate ofRh/5 KW per minute. The ISO typically re-
dispatches the power system in 5 minute intervals. At each 5
minute system dispatch, the ISO schedules slower response
tertiary reserves so as to reset the utilized RS reserves to
their set points. As a result, although not guaranteed, the
RS reserve provider’s tracking of ISO commands is for all



practical purposes energy neutral over the long time-scaleof
an hour and beyond. To meet the aforementioned contractual
requirements, an SMO must be capable of controlling loads
through the smart microgrid and a higherdecision support
and communicationlayer that interacts with users of energy
in order to adapt their demand behaviors to ISO’s requests.
The lower SMO layer consists of sensing and actuation com-
ponents that collect building state information and actuate so
as to safely implement goals determined at the higher level
and authorized by building occupants.

This paper focuses expressly on providing the higher
decision support layer with a virtual market that operates
on the building side of the meter for the purpose of eliciting
a collaborative response of building occupants. Our objective
is to derive an optimal SMOpricing or incentive policy
towards building occupants so that they consent to the sale
of RS reserves to the ISO and collaborate in meeting ISO’s
RS utilization requirements. To the best of our knowledge,
little relevant work has been published, and we are the first
to propose such a market based policy for demand control
aiming at the provision of RS reserves. Methodologically,
related techniques have been used in pricing Internet ser-
vices [10], [11]. In Sec. II, we detail our internal market
based model and formulate a related welfare maximization
problem. In Sec. III we cast the problem into aDynamic
Programming (DP)framework to obtain the optimal dynamic
policy. We then proceed to develop performance bounds and
approximations. In Sec. IV we develop a static policy and
in Sec. V we derive an easily computable upper bound on
the optimal performance. Based on this bound, we establish
in Sec. VI the asymptotic optimality of the static policy as
the load class specific consumption level becomes smaller
with a commensurate increase in the number of active
loads. Further, we extend the asymptotic optimality results
to account for constraints that model energy neutrality over
the long time-scale and the upper limit in the RS delivery
requested by the ISO . We present numerical results in
Sec. VII, and conclude in Sec. VIII.

II. PROBLEM FORMULATION

This section models the short time-scale interaction of
the SMO with microgrid occupants/loads and the ISO in
conjunction with RS reserves.

The SMO can sellRh KW of regulation service for the
duration of the long time-scale (e.g., one hour), provided
that its microgrid’s average consumption,R, exceedsRh and
its consumption capacity is at leastR + Rh. We envision
microgrid load classes that can be potentially active during
the relevant long time period to include, among others, lights,
HVAC zones, computers, electrical appliances and the like.
We denote the event of a load unit becoming active as an
internal arrival (i.e., internal to the building) and associate a
class-specific electricity demand increment with each arrival.
We similarly denote the event of a load unit becoming
inactive as aninternal departure. An actively consuming load
unit derives a positive utility. With the sale ofRh KW of
RS the SMO agrees to be on standby and respond to short

time-scale (e.g., seconds to minutes) ISO requests for an
increment or decrement of the building’s consumption. We
denote the event of an ISO request as anexternal arrival(i.e.,
external to the building). The termination of an ISO request
is modeled as anexternal departure. Note that the cumulative
ISO increment or decrement requests can not exceedRh or
−Rh respectively. As mentioned, the SMO’s response does
not have to be instantaneous. It must adhere, however, to a
response rate of roughlyRh/5 KW per minute. ISO requests
that are met by the SMO result in positive utility. In addition,
in its periodic 5 minute system re-dispatch, the ISO typically
attempts to reset its cumulative increment or decrement
requests to zero in order to enable RS providers to respond to
new requests during future inter-dispatch 5 minute periods.
This suggests that the long time-scale average deviation of
building consumption from itsR level equals zero. Hence,
the sale of RS reserves has an energy neutral impact on long
time-scale building consumption.

The primary objective is to maximize the sum of SMO and
ISO welfare associated with internal and external arrivals.
Hard and soft constraints are added to model adherence
to the contractual requirements and long time-scale energy
neutrality described above. To achieve these goals, the SMO
controls the active internal loads and external requests by
communicating external and internal-class-specificprices
that may be interpreted as dynamic demand control and RS
activation feedback signals as much as a monetary exchange.

We assumeM classes of internal loadsi = 1, . . . ,M ,
that arrive according to a Poisson process and requireri

KW for an exponentially distributed period with rateµi. Let
µ = (µ1, . . . , µM ). Each internal arrival of classi pays an
SMO determined priceui; we defineu = (u1, . . . , uM ).
We assume that the arrival rate of classi loads is a known
demand functionλi(ui) which depends onui and satisfies
Assumption A below. We denote the number ofactiveclass
i internal loads at timet by ni(t), i = 1, . . . ,M , and define
N(t) =

(

n1(t), . . . , nM (t)
)

.

Assumption A
For every i, there exists a priceui,max beyond which the
demandλi(ui) becomes zero. Furthermore, the function
λi(ui) is continuous and strictly decreasing in the range
ui ∈ [0, ui,max].

ISO requests for the dynamic activation of RS reserves are
modeled as a special external class. External RS activation
requests occur at a ratea(y) wherey is an SMO set price and
a(y) satisfies Assumption B below. While they are active,
external arrivals requirere KW each. They become inactive
upon their departure which follows an exponential distribu-
tion with rate d. Denoting the number of active external
class loads at timet by m(t), we can express the request
for increased or decreased building energy consumption as
R+Rh −m(t)re. We impose the following two constraints:

N(t)
′

r + m(t)re =

M
∑

i=1

ni(t)ri + m(t)re ≤ R + Rh, (1)

m(t)re ≤ 2Rh, (2)



where prime denotes transpose. Inequality (1) ensures that
at any timet the total capacity usage of all active loads
does not exceed the maximal building consumption capacity.
Inequality (2) ensures that the ISO can not request that the
average building consumptionR be increased beyondR+Rh

or decreased belowR − Rh.

Assumption B
There exists a priceymax beyond which the demanda(y)
becomes zero. Furthermore, the functiona(y) is continuous
and strictly decreasing in the rangey ∈ [0, ymax].

To render the proposed constrained welfare maximization
problem more meaningful, we first detail the arrival models
and the underlying demand functions. An arrival of an
internal load of classi generates utilityUi, where Ui is
a non-negative random variable taking values in the range
[0, ui,max] with a continuous probability density function
fi(ui). Arrivals of internal classi loads are a fraction ofpo-
tential classi arrivals generated according to a Poisson pro-
cess with constant rateλi,max. A potential arrival becomes
a real arrival if and only if the random utility realization,
Ui, exceeds the SMO set priceui. This implies that internal
class i arrivals occur according to a randomly modulated
Poisson process with rateλi(ui(t)) = λi,maxP[Ui ≥ ui(t)].
Furthermore, the expected utility conditioned on the fact that
a potential arrival has been accepted under a current price of
ui, is equal toE[Ui|Ui ≥ ui]. We therefore conclude that the
expected long-term average rate at which utility is generated
by the arrival of internal loads is given by:

lim
T→∞

1

T

M
∑

i=1

E

[
∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

]

.

Following a similar argument, the welfare generated from
external RS class arrivals can be expressed as:

lim
T→∞

1

T
E

[
∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

]

,

where Y stands for the welfare from the admission of a
potential external RS arrival, anda(y(t)) = amaxP[Y ≥
y(t)] whereamax is the maximal arrival rate of the external
RS class. An interesting interpretation of the long-term
average utility generated by external RS class arrivals is that
it represents the reservation reward level that the ISO might
be willing to pay the SMO for standby RS reserves.

Finally, recall that building response to active ISO RS
requests implies that the modified building load must equal
R + Rh − m(t)re. This is to avoid compliance by energy
dumping, and we impose the following penalty:

lim
T→∞

1

T
E

[

∫ T

0

P

(

(

R + Rh

)

−
(

M
∑

i=1

ni(t)ri+m(t)re

)

)

dt

]

,

whereP (·) denotes the penalty function. We make specific
assumptions onP (x) later.

The optimal pricing policy can now be described as the
arg max of:

lim
T→∞

1

T
E

[ M
∑

i=1

∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

+

∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

−

∫ T

0

P

(

(

R + Rh

)

−
(

M
∑

i=1

ni(t)ri + m(t)re

)

)

dt

]

. (3)

Due to Assumption A and B, functionsλi(ui) anda(y)
have inverse functions which we denote byui(λi) andy(a),
respectively. The inverse functions are defined on[0, λi,max]
and [0, a0], respectively, and are continuous and strictly
decreasing. This allows us to use the arrival ratesλi anda
as the SMO’s decision variables and write the instantaneous
reward rates asλiE[Ui|Ui ≥ ui(λi)] andaE[Y |Y ≥ y(a)].

III. D YNAMIC PROGRAMMING FORMULATION

The problem introduced in Sec. II is in fact a finite-state,
continuous-time, average reward DP problem. Note that the
set {U ,Y } = {(u, y)|0 ≤ ui ≤ ui,max,∀i; y ≤ ymax}
is compact and that all states communicate assuring that
there exists a (proper) policy that is associated with finite
first passage time from any state(N,m) to any other state
(N′,m′). Standard DP theory results assert that an optimal
stationary policy exists [12].

Since the process(N(t),m(t)) is a continuous-time
Markov chain and the total transition rate out of any state is
bounded byν =

∑M

i=1(λi,max+µi⌈(R+Rh)/ri⌉)+(amax+
d⌈(R+2Rh)/re⌉), we can uniformize this Markov chain and
derive the following Bellman equation [12]:

J∗ + h(N,m) = max
u∈U

[

∑

i∈C(N,m)

λi(ui)E[Ui|Ui ≥ ui]

+1D(N,m)a(y)E[Y |Y ≥ y]−P
(

(

R + Rh

)

−
(

N
′

r + mre

)

)

+
∑

i∈C(N,M)

λi(ui)

ν
h(N + ei,m) +

M
∑

i=1

niµi

ν
h(N − ei,m)

+ 1D(N,m)
a(y)

ν
h(N,m + 1) +

md

ν
h(N,m − 1)

+
(

1 −
∑

i∈C(N,M)

λi(ui)

ν
−

M
∑

i=1

niµi

ν

− 1D(N,m)
a(y)

ν
−

md

ν

)

h(N,m)
]

. (4)

Here,C(N,m) = {i|(N + ei)
′

r + mre ≤ R + Rh} is the
set of internal class arrivals that can be admitted in state
(N,m), D(N,m) = {(N,m) | N

′

r + (m + 1)re ≤ R +
Rh, (m+1)re ≤ 2Rh} describe the conditions under which
external RS class arrivals can be admitted to the system, and
1A denotes the indicator of some setA . The above Bellman
equation has a unique solutionJ∗ andh(·) for an arbitrarily
selected special state, say0 at which we specify the value
of the differential cost function, for exampleh(0) = 0 [12].
The scalarJ∗ stands for the optimal expected social welfare
per unit andh(N,m) denotes the relative reward in state
(N,m). Solution of Bellman’s equation yields an optimal
policy that maps any state(N,m) to the optimal price vector
(u, y) that maximizes the right-hand side of Equation (4).
Unfortunately, thecurse of dimensionalitystipulates that
Bellman’s equation is only solvable for a small state space.
We therefore seek a near optimal solution that is applicableto



SMO’s managing relatively large buildings or neighborhoods
with a large population of internal loads.

IV. STATIC PRICING POLICY

We consider astatic pricing policy, namely a fixed price
vector (u, y) independent of the system state, for two
reasons: (1) the computation effort of solving for optimal
dynamic prices increases exponentially in the number of
classes and active loads, and (2) good static prices can be
constructed tractably and under reasonable conditions lead to
reasonable behaved provision of RS. Indeed, under a static
pricing policy (u, y), the system evolves as a continuous-
time Markov chain with corresponding average welfare:

J
(

(u, y)
)

=

M
∑

i=1

λi(ui)E[Ui|Ui ≥ ui]
(

1 − Pi
loss[(u, y)]

)

+ a(y)E[Y |Y ≥ y]
(

1 − Qloss[(u, y)]
)

− E

[

P
(

(R + Rh) −
(

∑

i

niri + mre

)

)

]

, (5)

where Pi
loss[(u, y)] denotes the steady-state probability

P[N′
r+ri+mre > R+Rh] that an internal classi arrival is

rejected, andQi
loss[(u, y)] denotes the steady-state probability

P[N′
r + (m + 1)re > R + Rh or (m + 1)re > 2Rh] that an

external RS class arrival is rejected. Moreover, the expected
penalty cost is also given by the steady-state probability
associated with the same static policy(u, y).

The optimal static welfare is defined by

Js = max
(u,y)∈{U ,Y }

J
(

(u, y)
)

, (6)

and the following proposition holds.

Proposition IV.1 Js ≤ J∗.

V. OPTIMAL PERFORMANCEUPPERBOUND

In this section we develop an upper bound onJ∗ and use
it to quantify the suboptimality of the static policy.

Using the inverse demand functionsui(λi), and inter-
nal classi arrival rate λi, the instantaneous reward rate
is Fi(λi) = λiE[Ui|Ui ≥ ui(λi)]. Similarly, G(y) =
aE[Y |Y ≥ y(a)]. Assume that the functionsFi and G are
concave. Let Jub be the optimal value of the followingNon-
Linear Programming (NLP)problem:

max
∑

i

Fi(λi) + G(a) (7)

− P
(

(R + Rh) −
(

∑

i

niri + mre

)

)

s.t. λi = µini, ∀i

a = dm
∑

i

niri + mre ≤ R + Rh

mre ≤ 2Rh.

Remark:The non-negativity constraintsni ≥ 0 andm ≥ 0
are ignored here. Notice that the departure ratesµi andd are
positive, and the arrival ratesλi anda are also non negative
by definition. Thusni and m are also non-negative under
well-defineddemand functions.

Proposition V.1 If the functionsFi(λi) and G(a) are con-
cave andP (·) is convex, thenJ∗ ≤ Jub.

Proof: The proof is similar to a result in [10] and is
omitted.

The optimal solution of NLP (7) provides an upper bound
for the optimal social welfare. Moreover, if the objective
function of (7) is concave, the NLP is very easy to solve.

VI. A SYMPTOTIC BEHAVIOR

In this section, we consider an asymptotic regime and
discuss how to derive the optimal policy while satisfying
additional system behavior requirements.

A. Many Small Loads

If R and Rh are large relative to the required power of
a typical arrival, we expect that the laws of large numbers
will dominate, attenuate statistical fluctuations, and allow us
to carry out an essential deterministic analysis. To capture a
situation of this nature, we start with a base system character-
ized by finite capacityR andRh and finite demand functions
λi(ui). We then scale the system through a proportional
increase of capacity and demand.

More specifically, letc ≥ 1 be a scaling factor. The scaled
system has resourcesRc+Rc

h, with Rc+Rc
h = cR+cRh, and

demand functionsλc
i (ui), ac

j(yj) given byλc
i (ui) = cλi(ui)

andac(y) = ca(y). Note that the other parametersri, µi, and
re, d are held fixed. We will use a superscriptc to denote
various quantities of interest in the scaled system.

In this case, consider the NLP problem (7). The upper
boundJc

ub is obtained by maximizing
∑

i

cλi(ui)E[Ui|Ui ≥ ui] + ca(y)E[Y |Y ≥ y]

− P
(

(

cR + cRh

)

−
(

∑

i

cλi(ui)

µi

ri +
ca

d
re

)

)

,

subject to the constraints
∑

i
cλi(ui)

µi
ri +

ca(y)
d

re ≤ cR+cRh

and ca(y)
d

re ≤ 2cRh.
It can seen that, if the penalty functionP (·) is lin-

ear, then the optimal solution for (7), denoted byu
∗
ub =

(u∗
ub,1, . . . , u

∗
ub,M ) andy∗

ub, is independent ofc, andJc
ub =

cJ1
ub.
We summarize in the following assumption the property

of the penalty function.

Assumption C
P (Kx) = Kx for someK > 0.

We summarize the above result as follows:

Proposition VI.1 Under Assumption C, the optimal objective
value of (7) in the scaled system increases linearly withc,
i.e., Jc

ub = cJ1
ub.

We are interested in determining the gap between the two
bounds derived in Sec. IV and Sec. V. We show that in the
regime of many small users, the following result holds:



Theorem VI.2 Assume that functionsFi(λi) and G(a) are
concave, and Assumptions A, B, and C hold. Then,

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
J∗,c = lim

c→c

1

c
Jc

ub. (8)

Proof: The proof is omitted due to space limitations.

In the next two subsections, while staying in the regime
of many small loads, we extend the asymptotic optimality
results to accommodate additional system behavior require-
ments.

B. Energy Neutrality

We impose energy neutrality, i.e., require the long-term
average cumulative active requests of the external RS class
to equalRh. We show that energy neutrality can be achieved
if the SMO can appropriately influence the demand function
of the RS class.

We assume linear demandλi(ui) = λi,max(1 − ui

ui,max

)

and a(y) = amax(1 − y
ymax

). Suppose that the welfareUi

is uniformly distributed on[0, ui,max] and Y is uniformly

distributed on[0, ymax].Then,Fi(λi) = ui,max(λi −
λ2

i

2λi,max

)

and G(a) = ymax(a − a2

2amax

) are concave inλi and a,
respectively.

The NLP (7) can now be written as:

min −
∑

i

ui,max(λi −
λ2

i

2λi,max
) − ymax(a −

a2

2amax
)

+ K
(

(R + Rh) −
(

∑

i

λi

µi

ri +
a

d
re

)

)

s.t.
∑

i

λi

µi

ri +
a

d
re ≤ R + Rh,

a

d
re ≤ 2Rh. (9)

For ease of exposition but without loss of generality, we
consider next a system involving 2 internal and 1 external
RS class.

Note that the NLP problem (9) can be re-formulated into
the following Quadratic Programming (QP)problem:

min
1

2
[λ1 λ2 a]







u1,max

λ1,max

u2,max

λ2,max

ymax

amax











λ1

λ2

a





+





−K r1

u1

− u1,max

−K r2

u2

− u2,max

−K re

d
− amax





T 



λ1

λ2

a





s.t.

[

r1

µ1

r2

µ2

re

d
re

d

]





λ1

λ2

a



 ≤

[

R + Rh

2Rh

]

. (10)

The dual of (10) is also a QP problem. We denote the
optimal solution of the primal QP (10) by(λ∗

1, λ
∗
2, a

∗), and
the optimal solution of the dual QP by(q∗1 , q∗2).

Under energy neutrality, the long-term average of active
external RS class requests isRh, i.e., rea

∗/d = Rh. By
complementary slackness, we have the following optimality
conditions:

ymax(1 −
1

amax
·
dRh

re

) =
λ1,max

r1

µ1

+ λ2,max
r2

µ2

− R

λ1,max

u1,max

·
r2

1

µ2

1

+
λ2,max

u2,max

·
r2

2

µ2

2

·
re

d
,

R + Rh ≤ λ1,max
r1

µ1
+ λ2,max

r2

µ2
+ amax

re

d
,

R ≤ λ1,max
r1

µ1
+ λ2,max

r2

µ2
. (11)

Under conditions (11), the optimal social welfare is:

−
1

2

(

λ1,max
r1

µ1

+ λ2,max
r2

µ2

+ amax
re

d
− (R + Rh)

)2

λ1,max

u1,max

·
r2

1

µ2

1

+
λ2,max

u2,max

·
r2

2

µ2

2

+ amax

ymax

·
r2

e

d2

+
1

2
λ1,maxu1,max +

1

2
λ2,maxu2,max +

1

2
amaxymax. (12)

We summarize the above result as follows:

Proposition VI.3 Given (11), in the regime of many small
loads, the long-term average of active requests of the external
RS class isRh, and the optimal performance is given by (12).

VII. N UMERICAL EXPERIMENTS

In this section, we report numerical experiments that verify
and validate our results.

Assume that the SMO can support a maximal consumption
of 1200 KW with R = 1000 KW and Rh = 200 KW.
This consumption is consistent with the Boston University
(BU) Photonics building housing the office of the first two
co-authors. Consider two internal classes characterized by
(all arrival rates are in arrivals/minute and departure rates
in departures/minute):λ1(u1) = 1600 − 80u1, λ2(u2) =
800 − 80u2, u1,max = 20, u2,max = 10, λ1,max = 1600,
λ2,max = 800, r1 = 2 KW, r2 = 1 KW, µ1 = 1, µ2 = 2. The
RS class arrival rate is:a(y) = 1000(1−y/ymax) with ymax

to be determined,amax = 1000, re = 1 KW, d = 2. The
penalty function has a slope ofK = 1000. Assume that the
social welfareUi is uniformly distributed on[0, ui,max] and
Y is uniformly distributed on[0, yi,max]. With these values
we can solve the NLP problem (9) and obtain asymptotically
optimal static prices.

Consider a typical regulation service cycle consisting of
three 5-minute periods. Each cycle starts with a full RS
standby state, namely, with all RS active loads totalling
Rh. This is the result of the ISO 5 minute dispatch which
we model by tuning the value ofymax. In the following
two periods within the cycle, ISO requests are modeled as
random samples from a uniform distribution over[0, 2Rh]
which are instantiated by setting the corresponding value of
ymax. This random cycle is statistically neutral over the long
time-scale. In this experiment,ymax changes every 5 minutes
and the SMO must control internal class loads to meet ISO
requests within the 5 minute requirement of RS reserves.
By formulating and solving the NLP problem (9) at the
beginning of every period, the SMO is able to appropriately
set the prices that result in the required arrivals of internal
classes. We simulate the system for the long time-scale of
one hour consisting of 12 periods of 5 minutes each and
report the results below.

The steady-state arrival rates for the two internal classes
and the RS class in these periods are shown in Tab. I. The
evolution of the total consumption due to internal loads and
the total load of the RS class are shown in Fig. 1. Note



TABLE I

THE ARRIVAL RATES OF INTERNAL CLASSES AND THERS CLASS.

Period Internal class 1 Internal class 2 RS class

1 376 494 400
2 409 502 258
3 346 486 527
4 376 494 400
5 309 477 683
6 409 502 257
7 376 494 400
8 322 480 630
9 445 511 106
10 376 494 400
11 403 500 286
12 321 480 635

Fig. 1. Energy consumption by internal classes and active RS requests.

that by applying static pricing policies that are piece-wise
constant over each 5-minute period, internal loads converge
to the ISO request. Recalling that RS reserves are required to
respond with a ramp ofRh/5 KW per minute, the response
of internal class loads conforms well to requirements. Indeed,
since Rh = 200 KW in this example, the rate at which
n1(t)r1 + n2(t)r2 + m(t)re move away from and then
approach the1200 KW level should be close to40 KW
per minute. Figure 1 demonstrates this to be the case. The
SMO’s decision to offer200 KW of RS is consistent with its
capability to perform according to the associated contractual
requirements. In Figure 2, where we plot the number of
internal loads and RS requests, we note that there are on
average350 active loads of class 1 with a2 KW consumption
rate – these might be HVAC heating zone loads – and250
active loads of class2 with a 1 KW consumption rate. These
quantities are consistent with the BU Photonics building
which features several hundred heating zones.

VIII. C ONCLUSIONS

The prospect of a paradigm shift in the capabilities of the
electric power grid as well as building side of the meter mi-
crogrids through cyber-physical system (CPS) infrastructure
development is within sight. Such CPS infrastructure will
certainly enable loads to participate in power markets on a
par basis with generating units, not only in the provision

Fig. 2. Number of active internal loads and active RS requests.

of electric energy, but also in the provision of fast reserves.
In this paper we develop and test a market based approach
for a Smart Microgrid Operator (SMO) to control numerous
and diverse loads and provide such services. We start by
formulating a detailed dynamic optimal control problem and
then derive an associated tractable and yet near optimal non-
linear optimization model that is capable of determining both
short term (at the minutes time-scale) operational decision
support to the SMO as well as longer time-scale transaction
quantities (at the hourly time-scale). Our model is elaborated
and validated by numerical simulation results.
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