bu.edu/hic

Come Together, Right Now

Convergence and Collaboration in Cloud Computing, Data Security & Artificial Intelligence

September 30, 2020

Eric Kolaczyk | Orran Krieger | Kate Saenko | Mayank Varia

Convergence and Collaboration in Cloud Computing, Data Security & Artificial Intelligence - Agenda

- 4:00 4:05 Introduction and Welcome, Gloria Waters
- 4:05 4:15 Hariri Institute 101, Eric Kolaczyk
- 4:15 4:25 Cloud, Orran Krieger
- 4:25 4:35 Privacy/Security, Mayank Varia
- 4:35 4:45 AI, Kate Saenko
- 4:45 5:25 Panel Discussion and Q&A
- **5:25 5:30** Closing Remarks, Eric Kolaczyk

HARIRI INSTITUTE 101

Eric Kolaczyk

ABOUT THE INSTITUTE

The Hariri Institute for Computing at Boston University is dedicated to leading integrated initiatives in research and technology development, targeting a broad set of disciplines at the nexus of the computational and data sciences.

The Institute also serves as a *computational lens* — into the impact and potential inherent in Boston University's computational and datadriven investments.

Mechanisms & Resources

The Institute leverages a diverse set of mechanisms and resources:

- thematic research centers and initiatives
- focused research programs
- software and data science development capacities
- lab/office space
- state-of-the-art conferencing facilities
- a spectrum of staff capabilities.

(And, these days, Zoom!)

Powering the Institute

- Supporting, nurturing fledgling initiatives
- Amplifying faculty research
- Grant strategy, submission, management
- Event planning, promotion
- Financial and legal operations, procurement, and payroll

Natalie McKenna (<u>nataliec@bu.edu</u>) Associate Director, Finance & Administration **Emily Johnson** (<u>emilypj@bu.edu</u>) Finance & Operations Manager **Erica Seymourian** (<u>eseymou1@bu.edu</u>) Administrative Coordinator

Katherine D'Angelo (<u>ktd@bu.edu</u>) Program & Events Manager Korinne Dizon (kdizon@bu.edu) Finance Manager

Reach out to us!

A Closer Look

- Centers, Initiatives, and Labs
- Focused Research Programs (FRPs)
- "Did you know you could...?" Series
- Hariri Institute Distinguished Speaker Series

(Note: All supported virtually for now, and likely hybrid going forward.)

Hariri Institute Centers, Initiatives, and Labs

Focused Research Programs

- Medium/large-group research efforts around year-long themes.
- Aligned with BU strategic priorities and/or emerging opportunities.
- Umbrellas over several "verticals" -- working-groups at the heart.
- Organization/goals inspired by specific funding mechanisms.
- Structured around a 'package' of HIC-facilitated support.

BOSTON

FRPs for AY20-21:

- 1. Sci. Machine Learning for Chemistry & Materials Science
- 2. AI and Medicine -- Bias and Underserved Populations

"Did You Know You Could ...?" Series

- WHO: For anyone! Organized by the Graduate Student Fellows
- WHAT: A "brown bag" lunch series
- WHEN: Monthly (eventually biweekly?)
- **HOW**: 1 hr with Social/Lightening/Discussion format
- WHY: A way to get people from all walks @ BU to meet, mingle, and get exposed quickly and easily to things they did not know they would like to know.

Hariri Institute Distinguished Speaker Series

- **WHO**: For anyone! Organized by the Junior Faculty Fellows
- WHAT: Cluster of broadly accessible talks, plus panel discussion, by up-and-coming movers/shakers in computing and data science.
- WHEN: Once / semester
- HOW: 3 talks over ~2 weeks, followed group panel discussion
- WHY: Shine a spotlight on major challenges -- and emerging solutions -- in computing-enabled, data-driven topics of broad societal interest and impact.

Areas of Core Strength in Computing

From the perspective of computing, the Institute has core strengths in:

- Cloud computing
- Cybersecurity & privacy
- Artificial Intelligence

Emphasis is on both development of core areas and research convergence around domains and applications.

Today's event is centered on activity, impact, and potential around that core.

CLOUD PRESENTATION

Orran Krieger

Cloud Computing

- We are creating, starting with the MGHPCC data center and Mass Open Cloud (MOC), a shared cloud that:
 - is more economical for research users than today's public clouds
 - enables cloud research
 - provides strong incentive for industry to engage, demonstrate innovation in a public venue, evaluate new technologies
- This has led to and taken advantage of large NSF/NIH/Industry grants:
 - MACS, NESE, Red Hat Collaboratory@BU, two hundred donated servers from Two Sigma...

Current MOC Model

USAF MIT LL Red Hat Two Sigma Lenovo Dell Intel Cisco

1+ PB

- Block and S3 Object storage
- **Bare Metal Physical machines**

2500 cores,

~40TB RAM

- laaS VM, Volume
- Spark, Hadoop
- OpenShift: enterprise deployment of Kubernetes container platform:
- Built in CI, Monitoring, Load Balancing,

USAF MIT LL Red Hat Two Sigma Lenovo Dell Intel Cisco

Elastic Secure Infrastructure

POWER9 AC922 servers

- 5.6x CPU to GPU BW vs standard Intel via NVLink 2.0
- 40 NVIDIA Tesla V100 GPUs delivering up to **5,000 Teraflops** for Deep Learning
- All major open source Deep Learning Frameworks
- PowerAl Distributed Deep Learning enables Al across multiple servers

Moving to the MOC

- New North East Storage Exchange (NESE)
 - 20 PB + file system & Object storage
 - Massive data lake for region, co-located with MOC
 - Fraction of the cost of AWS S3

Conclave Cloud Dataverse: Protected Computing in the Datacenter

Mayank Varia

Privacy vs. utility on the cloud

- Companies in MA want to compute average salary differences by gender and race, without exposing average salary of any company
- Tier-1 trauma centers in Boston want to generate aggregate reports about cases they service without revealing any patient data
- Researchers in hospitals want to generate aggregate statistics about rare diseases across multiple hospitals *without revealing patient data*

Common theme: organizations want to run data analytics in the public cloud, but do not trust a single public cloud provider

Privacy-preserving scientific analysis in an open cloud

Cloud Dataverse combines the power of cloud computing and storage with access to thousands of datasets from a feature-rich repository platform

Privacy-preserving scientific analysis in an open cloud

Secure multi-party computation (MPC)

BOSTON

Conclave: MPC at scale

- SQL-like programming language
 ⇒ No MPC experience needed
- Static analysis to discern boundaries of secure computing
 ⇒ Scale to ~billions of records
- Dispatcher executes jobs on available backends
 ⇒ No new infrastructure

The synergistic payoff

Conceptual workflow: data upload

Conceptual workflow: data analysis

MPC takeaway: we can have it both ways

We can derive knowledge (K) from data held by several organizations, without sharing it or trusting any third party

Thanks!

github.com/ccd-mpc github.com/multiparty/conclave

AI PRESENTATION

Kate Saenko

Artificial Intelligence

Large group of faculty and students at BU working on AI, in particular:

- Deep learning
- Supervised, unsupervised, semi-supervised learning
- Active learning
- Domain adaptation
- Embeddings
- Encoder/decoder models
- Adversarial networks

Artificial Intelligence for

- Climate change & digital media
- Animal behavior analysis
- Image and video retrieval & semantic hashing
- Human gesture and activity recognition in video
- Smart crowdsourcing of image annotations & humans-in-the-loop systems
- Visual and language understanding, e.g., teaching machines to "talk" about what they see, recognizing text in images
- Home-based physical therapy, assistive systems for users with disabilities
- Detecting and remediating racial and gender bias
- COVID prediction

Image Credit: Shutterstock/Sepp photography

Artificial Intelligence: Making learning methods for computer vision accountable & interpretable

- Can machine learning methods explain their outputs?
- Can we visualize what evidence and what parts of the model support a particular conclusion?
- Can an algorithm explain what it "sees"?

Input woman jumping celebration

Artificial Intelligence for Animal Behavior Analysis

Watch the video of 3D bat flight: https://youtu.be/ntGJhyBhtdk

Artificial Intelligence Research

- Deep learning, artificial neural networks
- Computer vision, natural language processing
- Dataset bias, transfer learning

Understand images and language

UNIVERSITY

Transfer knowledge and overcome dataset bias

From dataset to dataset

From simulated to real control

From web to robot

From one demographic to another

Deep reinforcement learning: sim2real

Generate realistic images, changing their style or content

Panel Discussion and Q&A

Leveraging the Computational Perspective in a Data-Driven World for a Better Society

Website: bu.edu/hic

Twitter: @BU_Computing

Facebook: BUcomputing

