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Need for higher energy density batteries

Global demand for lithium-ion
batteries will be over 3,100 GWh
in2030

Global
announced
capacity:
approx
42TWh
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Challenges of High Energy Density Lithium Batteries

= Lithium plating
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Computational Modeling of Dendrite Growth at the
Electrode-Electrolyte Interface

= Lagrangian particle based model of dendrite growth

= Reactive transport: diffusion, advection, electrochemistry, surface
reactions
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Interfacial Geometry

Li, Q. et al. (2018)

Membranes and Separators
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Inequalities in global residential cooling energy use to 2050

lan Sue Wing
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As the climate warms, households will increase adoption
and utilization of residential air conditioning (AC)

A positive feedback loop

= AC is a widely available and effective technology to adapt to high
ambient temperatures, but it is expensive and consumes electricity

= Higher long-run average temperatures will boost demand for cooling,
inducing more households to purchase and operate AC units

= Higher transitory temperatures incentivize increased utilization of AC,
and demand for electricity to provide cooling

= |f higher electricity demand is satisfied by additional fossil fuel
generation, CO, emissions, amplification of warming could result!

How worried should we be about this? [ Answer: very! ]

= How much additional AC capacity will be added in response to rising
temperatures?

= Conditional on adoption of AC, how much additional electricity will
households use?

= Given scenarios of future population, economic growth and warming,
how will the future benefits of cooling be distributed across the world?

= How much additional CO, will we need to avoid emitting? BOSTON

Boston University Office of Research
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The “have nots”: Cooling poverty
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nature communications

Article https://doi.org/10.1038/s41467-024-52028-8

Inequalities in global residential cooling
energy use to 2050

Received: 22 October 2023 Giacomo Falchetta® >3/, Enrica De Cian® %, Filippo Pavanello™3* &
lan Sue Wing ®®

Accepted: 22 August 2024

Published online: 16 September 2024

Intersecting socio-demographic transformations and warming climates por-
tend increasing worldwide heat exposures and health sequelae. Cooling
adaptation via air conditioning (AC) is effective, but energy-intensive and
constrained by household-level differences in income and adaptive capacity.
Using statistical models trained on a large multi-country household survey
dataset (n = 673,215), we project AC adoption and energy use to mid-century at
fine spatial resolution worldwide. Globally, the share of households with
residential AC could grow from 27% to 41% (range of scenarios assessed: 33-
48%), implying up to a doubling of residential cooling electricity consumption,
from 1220 to 1940 (scenarios range: 1590-2377) terawatt-hours yr.”!, emitting
between 590 and 1,365 million tons of carbon dioxide equivalent (MtCO,e). AC
access and utilization will remain highly unequal within and across countries
and income groups, with significant regressive impacts. Up to 4 billion people
may lack air-conditioning in 2050. Our global gridded projections facilitate
incorporation of AC’s vulnerability, health, and decarbonization effects into
integrated assessments of climate change.

% Check for updates

Paper: https://doi.org/10.1038/s41467-024-52028-8
Data: https://zenodo.org/records/12697821
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Understanding Reactive Intermediate Exchange Reactions:
How to Achieve More Efficient Catalysis
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Catalysis: A Global Impact s

« %
Catalysis contributes up to ~ 35% of GDP Sustobiiity
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Reduction of CO, to Fuels and/or Sugars
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Cascade Catalysis vs Cooperative Strategy
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Cueny Lab Research: Understanding Transmetallation

Through Structural Mimics of Intermediates
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Climate Change, Climate Policy, and
Development

Kevin P. Gallagher

Professor of Global Development Policy, Pardee School
Director, BU Global Development Policy Center
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Precipitation disruption from severe weather
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Developing Countries Locked out of
New Climate Economy Trade

Major Exporters and Importers of LCT Goods, 2022

LCT Exports, USDb

LCT Imports, USDb

Powered by Bing
® Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, Open Places, OpenStreetMap, TomTom, Zenrin
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Development Finance i ey
and Climate Change
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RESEARCH THAT MATTERS: IMPACTS

%éﬁﬁﬁ@ﬁm » Resilience and Sustainability Trust; Incorporating Climate in
AND THE IMF Models for Debt Sustainability Analysis
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STRATEGIES TO BUILD URBAN HEAT RESILIENCE WHILE
TRANSFORMING OUR ENERGY SYSTEM

M. Patricia Fabian

Associate Professor of Environmental Health, School of Public Health
Associate Director, Institute for Global Sustainability
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Heat increasing in frequency,

Average number of

Average length of theannual

heat waves per year

heat wave season (days)
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Intensity and duration
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Living in urban heat
Islands (UHI) —some
neighborhoods are hotter
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Where should we cool?

Cooling demand
(people +UHI
+ vulnerability)

Cooling supply
(trees)

N
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How can we cool? — Energy transition opportunities

= Neighborhood — reduce local heat islands

- Buildings — improve ability to cool in place
at home, school, & work

mass save
s sy ey

Heat, cool and save
with heat pumps.

i
¥

Boston University Office of Research

Individual — reduce
vulnerability
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Making extreme weather health impacts visible
HEAT through household energy, climate, and sustainability

PROJECTS policies in frontline communities

Climate Impact Award
Wellcome Trust Foundation

‘ Elevate lived experience of Extreme
X ‘ frontline communities to temperature health
decision-makers impact policy tool
Chelsea and East

Boston Heat Project
Barr Foundation

Cities & frontline communities
resilient to extreme temperatures

Translating, sharing and scaling

. \'7
Local engagement, national é" )
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Interactions of climate change,
urbanization, and building energy
consumption: from global to local scales

Dan LI

Associate Professor
Earth & Environment and Mechanical Engineering
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Source: UN DESA

and account
for more than
60%
of global CO,
emissions

(Do) ofefefeofofofeofofofofefef
ofefefefeofofofofo(efefelef
olofeleoleololofolofelofelef

ololefefofolofel
ololefefofolofef
ololofefofolofeof
ololofofofolofef ;
ololofefofofofef
olelofofofofofefof
olelofofofolofefof
olololofofofofofof

6.7 billion

(@)) wm P g'8d0Y
al o I 09doy
(¢b] 8% I gvdoy
[} .
C =8 N 9zdoy
o
QO S
=]
AN
O}
(@) o

e
c S [

h hu)
fpu— & | :
© 2 s K%,
= = | o 5 00 if :

S s* 2
u m i T % 7 S £
Q «
O A
o)
Lol s -
)
c 81
@ 5

=1
" — 7
_ = 8
© g S

S
N o[

o — V —
- L Zow
— ‘T N ©
oo o
C St oggp
o) ol _ _ _ oleleofelofololofolofeolel
- & olelofolofololofolololel
I Ee— 8 ofefofofofofofolofololel
> 2 3 R 23 8T g cteletetetetetetetetotel 5
- : 5 elelefeleolololofofelolef
©

consumption

BOSTON

UNIVERSITY

Boston University Office of Research



Urbanized global climate modeling

Horizontal Grid
(Latitude-Longitude)

Sensible Heat

Sensible Heat Evaporation

Vertical Grid
(Height or Pressure) |~
‘ 3 " includes the atmosphere,
incoming solar land, oceans, ice and biosphere
energy outgoing heat
transition from 'Y
solid to vapour .
evaporative
and heat energy
; cumulus i
G b ey (o G
precipitation phere
SYApREILY (temperature, winds  §
and precipitation) &
stratus clouds 3

evaporation

Wang et al. (2020) Geophysical Research Letters
Wang et al. (2021) Environmental Research Letters
Wang et al. (2023) Environmental Research Letters
Li et al. (2024) Science Advances
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From global to local scales

Giorgi, F. (2019). Journal of Geophysical Research: Atmospheres

Boston University Office of Research

Water, food, energy,
ecosystem services,
biodiversity, migration,
coastal areas, tourism
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From global to local scales
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Advancing Optimization and Control
of Sustainable Power and Energy Infrastructures

Emiliano Dall Anese

Associate Professor
Department of Electrical and Computer Engineering
Division of Systems Engineering
College of Engineering
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Research overview

Online feedback optimization T_#T

Optimization under uncertainty

Safe optimization-based control
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Designing control and optimization architectures

A

[ Learning

| » Embed performance and reliability metrics

“{ (U, pt) = G(ug-1, pt—11xt—1)‘

lUt

~ Ztp ¢ Da(pr) | : -4

= Account for operational and reliability constraints

= Account for market and operational structures

= Learning of models and system behavior

Xt — eﬁ
i1 « D1(pt) WH

A new generation of control and Al for energy systems

BOSTON
COMMUNITY CHOICE
ELECTRICITY

Boston Community Choice Electricity (BCCE) gives
Bostonians greater control over the electricity that
powers their homes, places of worship and small
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Example: DER integration distribution grids

Over-voltages Overloading Large & decentralized
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Research: How to reliably integrate renewable energy systems and DERs in large scale?

[ Estimated model ] 5000 5 T . T ; ; C
— =l T I
7 4 1\ e vve I

( ) 7000 f{— .- e /‘l ]

1= Falw X 2 gogo [ B2 /
Fp(x,u) = argminky/+ r g(u) + Jir (x)k3 > < N RO N W
—> @ —»] E‘ ‘E 5000 Fgoo T I! ,/,’ ]
st. —(x)JIp(u)vV< =B (x), 2 I ]
g()h()_ﬁ() # % 54000_ i/ ]

g 775 ]
@(U)/S =By(u), E ,_5 P A S—— ff'l 3
; S 750 L 7.

\[CO|O'[ etal 23] ) E 2000 F"18:00 . 0:00’/,, 3
\_ Y, 1000 ot ]
Pagra ]
0 1 1 1 1 1 1 1 E
6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

4[ (Pseudo-)measurements ]

max T mean T max T" mean T
J x11.05 1.05max 17 06 1.06 Time (h) [At =10.00 5]

Owvervoltage duration

BOSTON
Boston University Office of Research UNIVERSITY



Example: sustainability of the transportation sector

How can renewable-based EV charging be maximized without disrupting of services?

Total missed ride requests: 11

pom— 1000 9
—3Ch Preg
e 800+ vehpeh |
=+ User bid i
3
= =
= 600 5
b z :
I 1 ,_g
Utility company 4 =
L= § 400 é
" 200 =
. 0
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Time

How can can we improve traffic congestion and enable electrification?
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Oil & Gas Development and Population Health:
An Environmental Hazard or Economic Threat?

Mary D. Willis

Assistant Professor
Department of Epidemiology, School of Public Health
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Oil & Gas Development in the U.S.
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Multidimensional Community Impacts of Oil & Gas

Environment Social Economic

Population Health

BOSTON
Boston University Office of Research UNIVERSITY



Oil & Gas Development as an Environmental Hazard

Part 1 B
Exposure Characterization

C:?,o

Risk
Perception

~ -
- -
”

Spatial Data
Integration

Personal
Monitors

Part 2
Epidemiologic Assessment

Fertility &
Fecundity
PRE
Early
Pregnancy Loss
Pregnancy

Complications

Birth

Outcomes

This industry produces reproductive toxicants
at levels that may harm fertility and pregnancy

Boston University Office of Research

Funded by NIH Office of the Director,

DP5-OD033415, PI: Willis SNL R Y



Oil & Gas Development as an Economic Threat

Resource Economic Boom Worse Mental Health Among
Monetary benefits accrue for landowners Disenfranchised Residents
Temporary employment opportunities Racially and ethnically minoritized groups
/ Disrupted social hierarchies People with disabilities
Environmental degradation and destruction Lower income communities
New Oil & Gas Women and gender minorities
Development Medicaid beneficiaries
ina

Community Resource Economic Bust Increased Psychiatric Conditions

Persistent unemployment Anxiety and related disorders
Abandoned infrastructure Stress
Sense of despair in community Depressive symptoms

Unclear future opportunities Substance use disorders
Self-harm

Cycles of boom-and-bust economies may threaten
community mental health
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Equity, justice and racism in the electric mobility transition

Benjamin K. Sovacool

Professor of Earth & Environment
College of Arts & Sciences
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We are amid a global electric vehicle ‘revolution’
Market share of electric light-duty vehicles, United States (2010-2050)
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* Online public survey of 7,266 adults (18 or older)

(a) Expected Short-Distance Driving Distance (per day) by PEV

(c) The Number of Personal Cars per Household (left)

. and Reliance on Public Transit (right)
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* Online public survey of 7,266 adults (18 or older)

Overall 18-29 30-39 40-49 50-69 70-79 80-89 90+
Cleaner air (no tailpipe emissions) 19% 18% 19% 19% 19% 20% 19% 18%
Generally, better for the environment 17% 17% 17% 18% 17% 18% 17% 15%
Cheaper fuel cost 16% 18% 19% 18% 15% 12% 12% 13%
Ability to refuel/charge at home 14% 14% 14% 14% 15% 14% 15% 16%
Noise reduction (car runs quietly) 12% 11% 11% 11% 13% 15% 15% 13%
Better driving efficiency (consumes less 11% 12% 12% 11% 10% 9% 11% 9%
energy)
Better acceleration (than gasoline- o
6% 7% 6% 6% 5% 4% 5% 4%

powered cars)

| do not think there are benefits to
electric vehicles over conventional 4% 2% 3% 3% 5% 9% 8% 13%
gasoline cars

Lee, D-Y, MH McDermott, BK Sovacool, and R Isaac. “Toward Just and Equitable Mobility: Socioeconomic and Perceptual Barriers
for Electric Vehicles and Charging Infrastructure in the United States.,” Energy & Climate Change 5 (December, 2024), 100146, pp.

119, BOSTON
Boston University Office of Research UNIVERSITY
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Geospatial modeling of adoption
and charging infrastructure ——

Lee, DY, A Wilson. MH McDermott, BK Sovacool, R Kaufmann, R Isaac, C
C I M Smith. M B (W D . ity displ

Boston University Office of Research

Geospatial modeling of EV

<« registrations and driving

patterns

Lee. DY, A Wilson. MH McDermott, BK Sovacool. R Kaufmann, R Isaac. C
Cleveland, M Smith. M Brown, and J Ward. “Does electric mobility display
racial or income disparities? Quantifying inequality in the distribution of
electric vehicle adoption and charging infrastructure in the United States,”

Applied Energy 378 (January, 2025), 124795, pp. 1-17.
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A Day In the Life of the Duck

A Day in the Life of the Duck
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Solid Oxide Fuel Cells (SOFC)
and Electrolysis Cells (SOECs)

EIectronS|s

1/2 O(g
K soFc
Hydrogen Oxygen
electrode electrode J
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“o\ysis

H20 o* 57 Oxygen
\ ﬁ depleted air

m &

0
enriched air
https://www.hitachi-hightech.com/global/en/sinews/si_report/080204/
BOSTON
Boston University Office of Research UNIVERSITY
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Reversible Solid Oxide Cells
(rSOCs)

SOFC Mode

Fuel Channel

HX
CH,, CO, H, s et J Air exhaust

’
E Compressor (both modes)
.

“Fuel” Tank
(CHy, Hy, CO rich)

=== SOFC mode
w— SOEC mode

Ambient air
(both modes)

SOEC Mode

Fuel Channel

Compressor

Reversible solid oxide cell operation Simplified schematic of a ReSOC electrical energy storage system
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Cycling from Storage to
Generation
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= Challenges: Addressing degradation — interfaces, interfaces, interfaces!

Co-Pls: Uday Pal (BU), Soumendra Basu (BU),
Yu Zhong (WPI), Olga Marina (PNNL),
John Pietras (Saint Gobain), Darren Hickey (Upstart Power)
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Data Center Demand Response
(and How It Can Help with Clean Energy Transition)
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Data Center Energy Surge

o US: 73 TWh (LBL, 2020) U.S. data centers tax the power grid

O . ™™ Data center energy demand, in gigawatts. Each gigawatt is roughly the amount of power
Global: 460 h (IEA Repo , 2022) generated by a large nuclear plant.

Projected

30

) (] 2014 2016 2018 2020 2022 2024 2026 2028
- Source: McKinsey and Company, January, 2023
[Figure: baxtel.com/map] AI |S derlng the gl'OWth |n data Center

Infrastructure & power consumption.
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Electricity Consumption (TWh/y)

Data Center Energy Growth in the US

EPRI Report, “Powering Intelligence: Analyzing Attificial Intelligence and Data Center Energy Consumption”, 2024.

600
% OF 2030
ANNUAL ELECTRICITY

500 SCENARIO GROWTHRATE = CONSUMPTION

Low growth 37% 4.6%
400  Moderate growth 5% 5.0%

High growth 10% 6.8%
300 Higher growth 15% 91% 1 —fiiititiiiiy
200 il L

Average historical data l““
100 -
/’V ¢ .
2000 2005 2010 2015 2020 2025 2030 2030 Data Center % of State Electricity Consumption

0-5% 5-10% 10-15% 15-20% 20+%

In 2023, about 4,178 billion kWh (or 4.18 trillion kWh) of electricity were generated at utility-
scale electricity generation facilities in the US.

About 60% of this electricity generation was from fossil fuels—coal, natural gas, petroleum,
and other gases. About 19% was from nuclear energy, and about 21% was from renewable
energy sources. (US Energy Information Administration)
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Smart Grid Data Center

Demand Response

Helps Fix
Supply vs. Demand
Imbalance
Scheduling and Power Management Algorithms
More
renewables
Forecast and Bid Framework to Control
Better in Power Markets for Job Scheduling and Power
management of Demand Response Management
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A Taxonomy of Data Center Demand Response

Data Center Demand Response
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[Coskun, Design Automation and Test in Europe (DATE) 24]
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U.S. Electricity In Transition
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Energy source shares in U.S. electricity generation, 1920-2023
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Source: U.S. Energy information Administration; US Bureau of Census; author calculations V|Sua”2|ng Energy
Boston University Institute for Global Sustainability | visualizingenergy.org | CC BY 4.0
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Rapid Change is Possible

WHO Smallpox Eradication Program Manhattan Project
(1966-1980) (1942-1946)

The Green Revolution COVID-19 Vaccine (2020)
(1940s - 1970s)
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Thank you!
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