

Analyzing and Optimizing Algorithms for Effective Online and Offline Ad Allocation

Lindsay Kossoff^{1,4}, Arav Chadha^{2,4}, Maggie Zhang^{2,4}, Isabella De La Garza^{3,4}, Alina Ene⁴

Holton-Arms School, 7303 River Rd, Bethesda, MD 20817¹; Canyon Crest Academy, 5951 Village Center Loop Rd, San Diego, CA 92130²; United High School, 2811 United Ave, Laredo, TX 78045³; Boston University, Commonwealth Ave, Boston, MA 02215⁴

Introduction

- With the growth of online advertising, advertisers are seeking more effective strategies to match ads with their target audiences
- This issue can be solved through the generalized assignment problem which aims to find the optimal connections between two sides of a binartite graph

Methods

Synthetic Instances

- Generates separate lists of advertisers, impressions and weights
 - Every impression, *i*, receives a randomly generated type
- Each advertiser, *a*, gets a budget and valuation per impression type from an exponential distribution
 For every advertiser/impression connection, the type-based valuation is added to the weights array

bipartite graph

Bipartite Graph For Ad Allocation

Fig 1. A bipartite graph outlining the nodes, edges and constraints of the ad allocation problem

- There are two types of allocations to consider for our problem
 - Online Ad Allocation: Impressions arrive one at a time with their valuations and need to be allocated immediately.
 - Offline Ad Allocation: All impressions and valuations are known before making allocations.
- While algorithms exist to solve this problem perfectly, they are not viable to run on large data sets due to their extreme run time
- We implemented one algorithms for each type of allocation with the

CVXOPT

- Convex optimization algorithm that returns a matrix of optimal allocations

Online Algorithm (Alg. 1):

 w_{ai} : valuation of *i* for *a* β_a : threshold value for *a* a(EXP): expected advertiser a(PRD): predicted advertiser

- Input: Robustness/consistency trade-off parameter $\alpha \in [1, \infty)$
 - For each *a* initialize $\beta_a \leftarrow 0$
 - For each *i*
 - Evaluate expected advertiser using $\max_{a} \{w_{ai} \beta_{a}\}$ and find the predicted advertiser
 - Assign *a* to max { $\alpha_B (w_{a(\text{PRD})i} \beta_{a(\text{PRD})}), w_{a(\text{EXP})i} \beta_{a(\text{EXP})}$ }
 - Allocate i to a and if a is over budget, remove the least valuable impression of a
 - Update β_a for a
- Output: Matrix of binary allocations

Offline Algorithm (Alg. 2):

- Inputs: Values λ and ϵ , number of rounds *R*
 - Assign priority score $\beta_a = (1 + \epsilon)^{-R}$ for all *a*
 - For rounds *R*
 - For all *i* in *a*: Update fractional allocation of *i* to $a < \sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} a_{i} =$

If $\sum_{a,i,\lambda} \leq 1$, allocate $D_{a,i,\lambda}$ Else allocate $D_{a,i,\lambda} / \sum_{a,j} D_{a,i,\lambda}$ $D_{a,i,\lambda} = \beta_a \cdot e^{(W_{a,i} - 1)/\lambda}$ a' = all a

If Alloc_a $\leq b_a / (1 + \epsilon)$ then $\beta_a := (1 + \epsilon) \cdot \beta_a$ If Alloc_a $\geq (1 + \epsilon) \cdot b_a$

goal of getting considerably close to the optimal solution while keeping a rapid performance.

Results

Fig 2. A heatmap displaying the objective value achieved through different combinations of epsilon and lambda (50 advertisers, 1000 impressions, and 50 rounds)

- For all *a* over budget, remove least valuable *i* until budget is met
- Output: Matrix of fractional allocations

Testing:

- Fine-Tuning: We used a heatmap to find the optimal values of λ and ϵ for Alg. 2
- Threshold Implementation: We compared the objective value found and run time for an exponential average, uniform average, and lowest weight threshold for Alg. 1
- Overall Comparison: For each data type we compared the run time (in seconds) and objective value found on instances of various sizes
- Data Types: Each algorithm ran on synthetic instances, corrupted instances, and real world data from the Stanford Large Network Dataset Collection

Fine-Tuning and Threshold Implementation:

- Using Fig. 2, we identified $\lambda = 0.25$ and $\epsilon = 0.21$ as the optimal parameters for Alg 2
- Fig. 3 shows that the exponential average calculates the best allocations for Alg 1 with a negligible time difference compared to the other threshold update methods

Comparisons on Different Data Types:

then $\beta_a := \beta_a / (1 + \epsilon)$

Alloc_{*a*} = total *i* allocated to *a* b_a = budget of *a*

Fig 6. Objective value and run time of Alg. 1, Alg. 2, and CVPXOPT on real-world data from the Stanford Large Network Dataset Collection (impressions determined by number of advertisers with increments of 3)

Fig 5. Objective value and run time of Alg. 1 and Alg. 2 (50 advertisers with increments of 100)

Taken 00

Fig 3. Graphs comparing the objective value and time taken for

three separate Alg. 1 threshold calculations

(100 advertisers with increments of 100)

Algorithm 1

Algorithm 2

Algorithm

10000

8000

6000

Algorithm 2

12000 — Alg 1 — Alg 1 — Alg 2 — Alg 2 10000 8000 6000 4000 20 2000 2000 4000 2000 4000 Number of Impressions Number of Impressions

Fig 7. Objective value and run time of Alg. 1 and Alg. 2 on corrupted synthetic data (20 advertisers with increments of 100)

- Alg. 1 and Alg. 2 consistently found nearly optimal solutions in a viable time for large data sets on synthetic and corrupted synthetic data.
- Fig. 6 shows Alg. 1 outperforming Alg. 2 on binary real-world data, highlighting the strength of Alg. 1's binary allocations

Future Work:

- Implement machine learning predictions rather than mathematical for Alg. 1
- Utilize algorithms for other bipartite graph problems with similar constraints

Acknowledgements

I would like to express my deepest gratitude to Dr. Ene for her invaluable and supportive mentorship throughout this research. I would also like to give a special thank you to my labmates. I could not imagine doing this project without your collaboration and encouragement. Lastly, I would like to thank my parents and RISE for providing me with this remarkable opportunity.

References

Agrawal, S.; Zadimoghaddam, M.; Mirrokni, V. Proportional Allocation: Simple, Distributed, and Diverse Matching with High Entropy. *PMLR* [Online], 2018, 80: 99-108 https://proceedings.mlr.press/v80/agrawal18b.html (accessed 2024-08-06).
Andersen, M.; Dahl, J.; Vandenberghe, L. CVXOPT Version 1.3 2023
Leskovec, J.; Krevl, A. Wikipedia Adminship Election Data, 2008. Stanford Large Network Dataset Collection. https://snap.stanford.edu/data/ (accessed 2024-08-06).
Spaeh, F.; Ene, A. Online Ad Allocation with Predictions. *arXiv* [Online], May 24, 2023, https://arxiv.org/pdf/2302.01827 (accessed 2024-08-06).