BOSTON Climate Clarity: Nitrogen Cycling in Soil Under Freeze-Thaw Cycles IVERSITY Madeleine Souza¹, Chikae Tatsumi², Jennifer Bhatnagar² Trinity High School, 581 Bridge St, Manchester, NH 03104¹, Boston University Department of Biology, Commonwealth Ave, Boston, MA 02215²

Introduction

Global temperatures will rise by 5°C over the next century

Freeze-Thaw Cycles: Warmer winter temperatures \rightarrow less snow coverage, less insulation from the air

- Organic horizon (OH) soil was collected in post-snow-melt season (PSM)
- 15N labeled Ammonium and 15N labeled Nitrate were added to the samples
- Ammonium and nitrate were extracted with Potassium Chloride (KCI)
 - The concentrations were determined using the

Conclusion/ Discussion

TRINITY HIGH

SCHOOL

A. Not supported

- warmed soil lowered the N cycling rate
- \rightarrow microbial activity does not simply increase with temperature

- \rightarrow soil is exposed to more temperature changes \rightarrow it cycles between freezing and thawing
- Past Climate Change Across Seasons Experiment (CCASE) studies found
- FTCs cause reductions in soil microbial biomass
- FTCs create anaerobic conditions
 - evidenced by rust in soil \rightarrow
- **CCASE Plots:**

- colorimetric method
- The 15N levels were measured by the IRMS Lab at BU

Results					
N Cycle with Rates:		1.22 ± 0.4 0.64 ± 0.1	7	NA ± NA 0.01 ± NA	
	Soil Organic	1.07 ± 0.4	-5 NH ₄ +	$0.00 \pm N/$	NO ₃ -
Matter N mineralization nitrification dissimilatory nitrate 			4	$\begin{array}{c} 0.80 \pm 0.6 \\ 0.74 \pm 0.4 \\ 0.58 \pm 0.5 \end{array}$	4 5
reduction to ammonium (DNRA) NH_4 + consumption			1.29 ± 0. 0.64 ± 0. 1.09 ± 0.	24	NA ± NA 0.02 ± NA 0.01 ± NA

- **B.** Not supported
 - FTCs did not reduce N cycling; rates were relatively similar to Reference Plots - FTCs did not accelerate the **DNRA** rate
 - \rightarrow soil microbial communities adapt and maintain their N cycling processes under FTCs
 - \rightarrow the high NH4 consumption rate + the low DNRA rate implies that ammonium was utilized in other pathways (denitrification or aerobic processes)
 - supported by a previous study investigating microbial metagenomics at

5. NO_3 - consumption

CCASE; observed increased genes for denitrification but decreased genes for DNRA

These results show that soil microbial N cycling is affected differently by summer and winter climate changes.

 \rightarrow if plants can absorb the increased N and utilize it in boosting their growth, it may help mitigate climate change \rightarrow if plants do not absorb it, the excess N could be lost to the atmosphere, accelerating greenhouse effects

- microbial activity
- one of the most limiting nutrients for plants
- greenhouse gas

Hypothesis

- **A.** Warmer soil \rightarrow increased N cycling
 - increased microbial activity

B. FTCs \rightarrow decreased N cycling + accelerated DNRA

- microbe biomass decreased
- anaerobic conditions

Summary:

- compared to the reference plot, rates of N Cycle processes generally decreased in both the Warmed Plot and the Warmed+FTCs Plot
- rates of N Cycle processes generally decreased more in the Warmed Plot than in the Warmed+FTCs Plot - the rate of DNRA decreased more in the Warmed+FTCs Plot than in the Warmed Plot

all the amazing

members of the

Bhatnagar Lab <3

Foundation

Research In

Science and

Engineering BU