SIEVE: An Efficient Eviction Policy
for Bufferpool Data

BOSTON

UNIVERSITY __, :
Prisha Shah"?, Andy Huynh?, Tarikul Islam Papon®, Manos Athanassoulis”

Eastlake High School (400 228th Ave NE, Sammamish, WA 98074)'; Boston University (665 Commonwealth Ave, Boston, MA 02215)°

Introduction Eviction Policies
Background
- The buﬁ‘erpool is a region of the computer's RAM with limited space that stores the most OTimEStamPS Bufterpool
relevant, frequently accessed data files by a user |y = Least Recently 6 7 8 9 10 11
- Cache eviction policies are algorithms that are used to strategically determine which data Used LrRul o 5 o D BN VR
files to remove when the bufferpool is full and a new page is requested MRU = Most Recently F
- Present—da¥ modern and classic policies such as ARC, FIFO, or LRU often face a trade-off Used
between efficiency and simplicity

Each time page a is requested:

- Adapting to more efficient eviction policies helps ensure optimal energy storage, minimum . If the pags is in the bufferpool, the page is moved to the front (MRU) and its timestamp is

cost, and the consistency of data files

Egg updated
id: 2483 e Readi e |f the pageis notin the bufferpool, the least-recently used page is evicted
BEEa Bufferpool dirty: true cading o The requested page is added in the front as the most-recently used
' (stored in RAM) nnn timestamp: 23 fetches
' content Figure 1: Least Recently Used (LRU) Policy Visualization
@ contents . E:/?irgna page O Clean Page Bufferpool
& Clean-First Region Working Region
replaces _
‘ content . Dirty Page C . C
ard Disk Drive andom-Access Memo entral-Processing Uni
: H d|i) kD R A M ry (RAM) Central-P g Unit (CPU) LRU - Least Recently| LRU = A B E MRU
Objective Used
- This research study explores a new implementation of the recently-discovered SIEVE policy MRU ™ Most Recently —>
to determine future implications of SIEVE in various workloads | | < s e . Hindow, w
- The SIEVE implementation is compared to the implementations of LRU (classic policy) and fmp‘zgzs are‘:Llyzfo":e(; e et egion
CLFRU (mOdern pOlICV) to explore differences in performance metrics across workloads * First LRU clean page that is found is evicted; if clean-first region has no clean pages, the first LRU
dirty page is evicted
M etho dS e Window size (w) is determined with parameter n
Window Size (w) = Buffer Size / n
. L . . . Figure 2: Clean-First Least Recently Used (CFLRU) Policy Visualization
Part 1: Implementing Cache Eviction Policies + Read/Write Simulator (C++) Bufferpool
- Implemented algorithms for CFLRU, LRU, and SIEVE using VS Code + WSL OVisited=False
- Implementation included workload generator, executor, and parameter prerequisite files which were
compiled using a Makefile under the target Buffermanager O Visited = True | Tail C F A B D E Head
- Executor included a simulation of fetching & executing read/write requests
- Each call to the Buffermanager generated metrics on the hit rate, miss rate, read 10, write 10, and policy {’D SIEVE hand
execution time Each time page a is requested:
o]) e |fthe SIEVE hand points to a visited page, the page is changed to false
Part 2: Building a Compiler for Data Collection (Python) e If hand points to an unvisited page, the page is evicted; the requested page is added to the head
- 2 Compilers: first compiler varied disk & bufferpool sizes & the number of page requests; second compiler e Hand moves one right (tail to head) for each request
tracked metrics across algorithms resulting from different workload skews and read/write ratios Figure 3: SIEVE Policy Visualization
- Each compiler generated a CSV file with data sets for each combination of parameter values by calling
repeated requests on the Buffermanager through terminal command-prompts Parameters
- Incorporated Regex and Python Subprocess in compilers for parsing data Parameter Compiler 1 Compiler 2
- Utilized Python libraries such as pandas & matplotlib in Jupyter Notebook for generated data visualization Bufferpool Size; 4,000; 16,000 80,000; 1.000:10.000
Disk Size 10,000 20,000 1075 ’ T
Number of N . 1A - A
+ ﬁ - — Reauste 10"5 2%10%5 106 1076
—> ' — upyter
— = JUPY Read/Write Ratio 70/30 10/90 30/70 50/50 70/30 90/10
~fp- =7
(%‘;‘ig:g;aiik::;es) 100%, 100% 80%, 20% 90%,10% 95%, 5% 100%, 100%
Results
Workload (R/W) = 70/30 Workload (R/W) = 10/90 Workload (R/W) = 90/10
Hit Rate by Bufferpool Size for each Algorithm Hit Rate by Skew for each Algorithm Hit Rate by Skew for each Algorithm
74.98 74.97 74.93 100 - 96.71 96.71 96.72 100 - 56 72 pp— o6 7
- 93.17 93.18 93.16 93.16 93.15 93.14 Skewed
84.05 55 51 84.74 83.99 84.76 workloads refer
60 - 50~ 80 1 77.04 to the % of
56.07 56.08
accesseson a %
- ot —_ . . of pages in the
S 5 S bufferpool (e.g.
9 39.38 o py ’
s ® 3 5 80% on 20%
T . T - 39.94 39.94 39.9 T 40 - 39.89 39.89 39.89 means 80% of
accesses are
20 - done on 20% of
20 - mmm Skew: 80% on 20% 20 - mmm Skew: 80% on 20% the bufferpool
10 - mmm Buffer/Disk: 4000/10000 Skew: 90% on 10% Skew: 90% on 10% data)
Buffer/Disk: 16000/20000 BN Skew: 95% on 5% mmm Skew: 95% on 5%
B Buffer/Disk: 80000/10"°5 BN Skew: 100% on 100% B Skew: 100% on 100%
’ . mEm—— seeeew . i
° SIEVE CFLRU ’ SIEVE CFLRU ° LRU SIEVE CFLRU
Algorithm Algorithm Algorithm
Conclusions References
[1] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon Lee. 2006.
. . 0 . . . CFLRU: a replacement algorithm for flash memory. In Proceedings of the 2006 international
- SIEVE performs significantly better (+9.57%) compared to LRU within larger environments that conference on Compilers, architecture and synthesis for embedded systems (CASES '06).
encompass larger bufferpool/disk sizes (e.g., Buffer, Disk sizes of 80,000, 10"5) Association for Computing Machinery, New York, NY, USA, 234-241.
. . . https://doi.org/10.1145/1176760.1176789
- SIEVE and CFLRU have comparable hit rates in macroenvironments; however, CFLRU takes over 161 2] SIEVE: an Efficient Turn-Key Eviction Algorithm for Web Caches - SIEVE is simpler than LRU.
timeS the prOCQSSing Speed Of SIEVE > SIEVE iS more efficient in HDDS Github.io. https://cachemon.github.io/SIEVE-website/blog/2023/12/17/sieve-is-simpler-than-
. . . _ _ . Iru/#sieve-is-beyond-an-eviction-algorithm (accessed 2024-07-02).
- SIEVE outperforms LRU in hit rate on write-heavy workloads (R/W = 10/90); however, it 3] Zhang, Y.; Yang, J.; Yue, Y.; Vigfusson, Y.; Rashmi, K. V. SIEVE Is Simpler than LRU: An Efficient
underperforms When enacted in read_heavy WOrklOadS (R/W — 90/10) Turn-Key Eviction Algorithm for Web Caches. In Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24); 2023.
Future Implications | | | | | Acknowledgements
- The SIEVE policy can be implemented in larger environments with a higher number of request | would like to thank my mentors Andy Huynh and Tarikul Islam
operations, which may improve long-term efficiency for cache eviction - | Papon, and Professor Manos Athanassoulis for their invaluable
- Implementing the SIEVE policy can be integral in write-heavy systems such as applications for logging guidance and support throughout this project. | would also like
systems or financial transactions to thank Boston University for the amazing experience | hac

during my research.

BOSTON . _ o .
ONIVERS Ty https://github.com/s-prshah/cache_eviction_simulation

	Slide 1

