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Introduction Eviction Policies
Background
- The buﬁ‘erpool is a region of the computer's RAM with limited space that stores the most OTimEStamPS Bufterpool
relevant, frequently accessed data files by a user |y = Least Recently 6 7 8 9 10 11
- Cache eviction policies are algorithms that are used to strategically determine which data Used LrRul o 5 o D BN VR
files to remove when the bufferpool is full and a new page is requested MRU = Most Recently F
- Present—da¥ modern and classic policies such as ARC, FIFO, or LRU often face a trade-off Used
between efficiency and simplicity

Each time page a is requested:

- Adapting to more efficient eviction policies helps ensure optimal energy storage, minimum . If the pags is in the bufferpool, the page is moved to the front (MRU) and its timestamp is

cost, and the consistency of data files
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' content Figure 1: Least Recently Used (LRU) Policy Visualization
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Objective Used
- This research study explores a new implementation of the recently-discovered SIEVE policy MRU ™ Most Recently —>
to determine future implications of SIEVE in various workloads | | < s e . Hindow, w
- The SIEVE implementation is compared to the implementations of LRU (classic policy) and fmp‘zgzs are‘:Llyzfo":e(; e et egion
CLFRU (mOdern pOlICV) to explore differences in performance metrics across workloads * First LRU clean page that is found is evicted; if clean-first region has no clean pages, the first LRU
dirty page is evicted
M etho dS e Window size (w) is determined with parameter n
Window Size (w) = Buffer Size / n
. L . . . Figure 2: Clean-First Least Recently Used (CFLRU) Policy Visualization
Part 1: Implementing Cache Eviction Policies + Read/Write Simulator (C++) Bufferpool
- Implemented algorithms for CFLRU, LRU, and SIEVE using VS Code + WSL OVisited=False
- Implementation included workload generator, executor, and parameter prerequisite files which were
compiled using a Makefile under the target Buffermanager O Visited = True | Tail C F A B D E Head
- Executor included a simulation of fetching & executing read/write requests
- Each call to the Buffermanager generated metrics on the hit rate, miss rate, read 10, write 10, and policy {’D SIEVE hand
execution time Each time page a is requested:
o ] ) e |fthe SIEVE hand points to a visited page, the page is changed to false
Part 2: Building a Compiler for Data Collection (Python) e If hand points to an unvisited page, the page is evicted; the requested page is added to the head
- 2 Compilers: first compiler varied disk & bufferpool sizes & the number of page requests; second compiler e Hand moves one right (tail to head) for each request
tracked metrics across algorithms resulting from different workload skews and read/write ratios Figure 3: SIEVE Policy Visualization
- Each compiler generated a CSV file with data sets for each combination of parameter values by calling
repeated requests on the Buffermanager through terminal command-prompts Parameters
- Incorporated Regex and Python Subprocess in compilers for parsing data Parameter Compiler 1 Compiler 2
- Utilized Python libraries such as pandas & matplotlib in Jupyter Notebook for generated data visualization Bufferpool Size;  4,000; 16,000 80,000; 1.000:10.000
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Results
Workload (R/W) = 70/30 Workload (R/W) = 10/90 Workload (R/W) = 90/10
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