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INTRODUCTION METHODOLOGY

e Miniaturized microscopes (miniscopes) have a limited EDoF Pipeline: Ground Truth Samples
depth of field — the Tian Lab is developing an Summed Across Z-Axis Targets for
extended depth-of-field (EDoF) miniscope using deep T Reconsiruction
learning and optics to view deeper into the brain’

e Issue: Images taken with miniscopes contain
slow-varying background, due to fluorescence from
out-of-focus planes and scattered light. High frequency
noise is also introduced by the detection system.

e Wavelet Filter: Applies wavelets (small wave-like
oscillations localized in time) as a high- and low-pass
filters to separate and extract the low-frequency and / |
high-frequency components of an image? Stack of Neurons

e Objective: Implement a wavelet filter in our end-to-end SlICeCReioS Sl
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RESULTS

Model Metrics Wavelet Type: Sometimes, images were processed best with the db1 wavelet (shown Output vs. Target
Code Environment: Visual Studio Code below). Other times, images were processed best with the db2 wavelet.

Implementation: Python — Pytorch — Pytorch-Wavelets?®
GPU: NVIDIA A100/A4/L40S (depending on run)

Loss: MSE + GradLoss + fMAE

Wavelet Basis: db1 and db2

Full-Width of Half-Maximum (FWHM) of PSF: 8.0
Noise Level: 2.0

e Runtime With No Preprocessing Layer: Shr 40min

e Runtime With Wavelet Filter*: 5hr 52min Ground Truth

*Calcglated by averaging 6 runs with different hyperparameters Unprocessed Processed w/ db1 (Wavelet Processed w/ db2 (Wavelet
(learning rate, scheduler, wavelet type, etc.) Shown in Corner) Shown in Corner)

Learning Rate Scheduler: The Cyclic Learning Rate Scheduler (causing the learning rate to cycle between 5e-9 and 5e-7 every 2000 epochs) performed
the best across all loss metrics, achieving a total loss of 0.9809.
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CONCLUSIONS

e Hyperparameter tuning shows that setting the FWHM of the PSF and the noise level as fixed values based on the optical system yields best results following the preprocessing layer

e The wavelet filter ensured that the model could converge fast and accurately by getting rid of the out-of-focus fluorescence background and noise, thereby encouraging it to focus training on
the most important parts of the data with little significant increase in computational time

e Model performed best when wavelet filter outputted a stack of the unprocessed image, the image processed with the db1 wavelet, and the image processed with the db2 wavelet

e Future Directions:
o Test Wavelet Filter with different combinations of wavelets to find the most optimal one: run more tests with the Symlet family because of its small support and use in denoising images

\ o Improve loss metrics: focus on decreasing loss within the Fourier domain /
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