Adaption of Cheon-Kim-Kim-Song (CKKS) for Practical Use in Computer

Systems

OSTON

Smaran Manchala^{1,2}, Seyda Nur Guzelhan², Ajay Joshi² Centennial High School, 6901 Coit Rd, Frisco, TX 75035¹,

Boston University Integrated Circuits and Systems Group (ICSG), 8 St Mary's St, Boston, MA 02215²

Introduction	Methods	Discussion/
 Traditionally encrypted data cannot be altered without decryption, limiting 	 Overview To test variable factors, the training runtime of various Neural Networks 	Conclusions
privacy and cloud computing, where third parties benefit from processing data without viewing it.	were compared Neural Network Neural Network is	ARM Architecture: RAM: 8.0 GB Cores: 8 Clock Speed: 3.2 Ghz Caches: L1 Cache: 192KB per core
 Homomorphic Encryption (HE) allows 	trained on MNIST	L2 Cache: 12MB shared L3 Cache: Unified L3 Cache: Unified L3 Cache: Unified L2 Cache: 1.25 MB per core L3 Cache: 24 MB shared

mathematical operations on ciphertext, overcoming this limitation. Refer to the image for details. However, HE is impractical due to slow run time.

Objective

• This study aims to improve the efficiency of Cheon-Kim-Kim-Song (CKKS), a HE algorithm, on a microarchitecture level

Database, database of hand drawn numbers

• The Neural Network structure is shown **MNIST Example**

Figure 12. Architecture Scale Factor Application Results

- Figure above shows design specifications for the Computer used in each Architecture
- Scale Factor: 1.84

Runtime Improvements

- For traditional encryption, Model 2 significantly outperformed Model 1 with a 2.63X performance, scaled to
- Applying Vector Parallelization with performance increase, as well as an

512

512

Variable Factors

0

784

• **Computer Architecture:** The two most common computer architectures, ARM and

0

10

0

10