
Adaption of Cheon-Kim-Kim-Song (CKKS) for Practical Use in Computer
Systems

Smaran Manchala1,2, Seyda Nur Guzelhan2, Ajay Joshi2

Centennial High School, 6901 Coit Rd, Frisco, TX 750351,
Boston University Integrated Circuits and Systems Group (ICSG), 8 St Mary's St, Boston, MA 022152

Results References

Acknowledgements

Discussion/
Conclusions

Introduction
● Traditionally encrypted data cannot be

altered without decryption, limiting
privacy and cloud computing, where
third parties benefit from processing
data without viewing it.

● Homomorphic Encryption (HE) allows
mathematical operations on
ciphertext, overcoming this limitation.
Refer to the image for details.
However, HE is impractical due to slow
run time.

Objective

● This study aims to improve the
efficiency of Cheon-Kim-Kim-Song
(CKKS), a HE algorithm, on a
microarchitecture level

however

Methods
Overview
● To test variable factors, the training runtime of various Neural Networks

were compared
Neural Network
● Neural Network is

trained on MNIST
Database, database of
 hand drawn numbers

● The Neural Network
structure is shown

MNIST Example

Approximations
● CKKS supports limited

operations, mainly
addition and
multiplication, enabling
polynomial evaluations.

● Functions like ReLU,
SoftMax, and Loss
cannot be directly
performed and must be
approximated with
Chebyshev polynomials.

CKKS
● CKKS is a fully homomorphic encryption

(FHE) system

Variable Factors
● Computer Architecture: The two most

common computer architectures, ARM and
x86 each have layouts that either that could
benefit or detriment the runtime.

● Vector Parallel Processing: Parallel
Processing would cause multiple vectors to
processed at once, possibly increasing
speed. However, overhead cost cache
coherence, and false sharing could cause an
algorithm to take more time when run in
parallel.

Experiment
● The experiment

with consist of 6
Neural Network
Variations

● Each of these
networks were
run 10 times and
were recorded
and compared

Figure 4. Example images in MNIST
Database

Figure 3. Neural Network Base Architecture

Figure 6. Model 1 Runtime Distribution

Figure 7. Model 2 Runtime Distribution

I would like to acknowledge my mentor,
Sedya Nur Guzelhan, in taking time out
of her busy schedule to teacher me and
guide me as I conducted my own
research. I would also like to thank
Professor Ajay Joshi for giving me this
opportunity as well as guiding me on my
project development journey.

Figure 1. CKKS Algorithm
Walkthrough

Figure 2. CKKS Algorithm Encrpytion and
Decrpytion

Figure 8. Model 3 Runtime Distribution

Figure 9. Model 4 Runtime Distribution

Figure 10. Model 5 Runtime Distribution

Figure 11. Model 6 Runtime Distribution

Results
● Figure above shows design

specifications for the Computer
used in each Architecture

● Scale Factor: 1.84

Runtime Improvements
● For traditional encryption, Model 2

significantly outperformed Model 1
with a 2.63X performance, scaled to
1.43X performance boost for x86
compared to ARM

● Applying encryption to network
apprised approximately a 6417X
slowdown from performance
overhead

● Applying Vector Parallelization with
x86 gave approximately a 5.67X
performance increase, as well as an
approximately 2.45X performance
increase with ARM

Conclusion: x86 architecture is more
effective with the application of
Cryptography. Vector Parallelization is
also effective with runtime decrease,
the most effective being with x86.

Figure 12. Architecture Scale Factor
Application

● Mihara, Kentaro, et al. “Neural Network Training with
Homomorphic Encryption.” ArXiv.org, 2020,
arxiv.org/abs/2012.13552. Accessed 1 Aug. 2024.

● K. Nandakumar, N. Ratha, S. Pankanti and S. Halevi, "Towards
Deep Neural Network Training on Encrypted Data," 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Long Beach, CA, USA,
2019, pp. 40-48, doi: 10.1109/CVPRW.2019.00011.
keywords: {Training;Data models;Computational
modeling;Neural networks;Encryption;Machine learning},

● Tsu-Tian Lee and Jin-Tsong Jeng, "The
Chebyshev-polynomials-based unified model neural
networks for function approximation," in IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.
28, no. 6, pp. 925-935, Dec. 1998, doi:
10.1109/3477.735405.

● keywords: {Chebyshev approximation;Neural networks;Least
squares approximation;Recurrent neural
networks;Polynomials;Feedforward neural
networks;Multi-layer neural network;Multilayer
perceptrons;Least squares methods;Computer errors},

Figure 5. Neural Network
Variation Classification

