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Introduction
● Traditionally encrypted data cannot be 

altered without decryption, limiting 
privacy and cloud computing, where 
third parties benefit from processing 
data without viewing it.

● Homomorphic Encryption (HE) allows 
mathematical operations on 
ciphertext, overcoming this limitation. 
Refer to the image for details. 
However, HE is impractical due to slow 
run time.

Objective

● This study aims to improve the 
efficiency of Cheon-Kim-Kim-Song 
(CKKS), a HE algorithm, on a 
microarchitecture level

however

Methods
Overview
● To test variable factors, the training runtime of various Neural Networks 

were compared
Neural Network
● Neural Network is 

trained on MNIST 
Database, database of
 hand drawn numbers

● The Neural Network 
structure is shown

MNIST Example

Approximations
● CKKS supports limited 

operations, mainly 
addition and 
multiplication, enabling 
polynomial evaluations.

● Functions like ReLU, 
SoftMax, and Loss 
cannot be directly 
performed and must be 
approximated with 
Chebyshev polynomials.

CKKS
● CKKS is a fully homomorphic encryption 

(FHE) system

Variable Factors
● Computer Architecture: The two most 

common computer architectures, ARM and 
x86 each have layouts that either that could 
benefit or detriment the runtime.

● Vector Parallel Processing: Parallel 
Processing would cause multiple vectors to 
processed at once, possibly increasing 
speed. However, overhead cost cache 
coherence, and false sharing could cause an 
algorithm to take more time when run in 
parallel.

Experiment
● The experiment 

with consist of 6 
Neural Network 
Variations

● Each of these 
networks were 
run 10 times and 
were recorded 
and compared

Figure 4. Example images in MNIST 
Database

Figure 3. Neural Network Base Architecture

Figure 6. Model 1 Runtime Distribution

Figure 7. Model 2 Runtime Distribution
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Figure 1. CKKS Algorithm 
Walkthrough

Figure 2. CKKS Algorithm Encrpytion and 
Decrpytion

Figure 8. Model 3 Runtime Distribution

Figure 9. Model 4 Runtime Distribution

Figure 10. Model 5 Runtime Distribution

Figure 11. Model 6 Runtime Distribution

Results
● Figure above shows design 

specifications for the Computer 
used in each Architecture

● Scale Factor: 1.84

Runtime Improvements
● For traditional encryption, Model 2 

significantly outperformed Model 1 
with a 2.63X performance, scaled to 
1.43X performance boost for x86 
compared to ARM

● Applying encryption to network 
apprised approximately a 6417X 
slowdown from performance 
overhead

● Applying Vector Parallelization with 
x86 gave approximately a 5.67X 
performance increase, as well as an 
approximately 2.45X performance 
increase with ARM

Conclusion: x86 architecture is more 
effective with the application of 
Cryptography. Vector Parallelization is 
also effective with runtime decrease, 
the most effective being with x86. 

Figure 12. Architecture Scale Factor 
Application

● Mihara, Kentaro, et al. “Neural Network Training with 
Homomorphic Encryption.” ArXiv.org, 2020, 
arxiv.org/abs/2012.13552. Accessed 1 Aug. 2024.

● K. Nandakumar, N. Ratha, S. Pankanti and S. Halevi, "Towards 
Deep Neural Network Training on Encrypted Data," 2019 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW), Long Beach, CA, USA, 
2019, pp. 40-48, doi: 10.1109/CVPRW.2019.00011. 
keywords: {Training;Data models;Computational 
modeling;Neural networks;Encryption;Machine learning},

● Tsu-Tian Lee and Jin-Tsong Jeng, "The 
Chebyshev-polynomials-based unified model neural 
networks for function approximation," in IEEE Transactions 
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 
28, no. 6, pp. 925-935, Dec. 1998, doi: 
10.1109/3477.735405.

● keywords: {Chebyshev approximation;Neural networks;Least 
squares approximation;Recurrent neural 
networks;Polynomials;Feedforward neural 
networks;Multi-layer neural network;Multilayer 
perceptrons;Least squares methods;Computer errors},

Figure 5. Neural Network 
Variation Classification


