
Investigating the Security of PCIe Passthrough Connections with Fuzzing

Methods

References

Acknowledgements

Results

Discussion/Conclusions

Introduction

huh`g

PCIe Passthrough
● PCIe connects a computer's peripheral 

components, such as network interface cards 
(NICs), graphics cards, and storage controllers 
to the host

● PCIe passthrough gives VMs direct access to 
peripheral devices, enabling them to interact 
as though they are physically attached to the 
guest

Figure 2: Representation of components in a PCIe 
passthrough connection. PCIe device is connected to 
guest directly.

Fuzzing
● Fuzzing is a popular method for identifying 

bugs in software, but has recently been 
applied more in hardware security 

● Fuzzing involves repetitively feeding random 
inputs to a program or system in an attempt to 
find bugs or vulnerabilities through crashes or 
unexpected outputs

● Coverage-guided fuzzing involves mutating 
inputs based on the coverage of the previous 
executions

Problem/Task:
● Although the functionality of the PCIe 

interface has been verified, there is limited 
research on the security risks associated with 
exposing a PCIe device to a VM using PCIe 
passthrough

● We are testing the isolation of these 
passthrough connections, and the ability of a 
malicious VM to affect a host system

Syosset High School, 70 Southwoods Road, Syosset, NY 117911, 

Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 0221522

Figure 1: Typical 
representation of 
how a peripheral 
device (NIC) is 
connected to a 
host via a regular 
PCIe connection.

Setup
● Use a QEMU/KVM virtual setup on a machine with 

the following components (NIC and SSD passed 
through:
○ CPU: Intel Xeon Silver 4314 16-core CPU (x86)
○ SmartNIC: Mellanox ConnectX-6
○ SSD: 960 GB Samsung PCIe4 x4 NVMe

● We fuzz by writing values to the configuration 
registers of the PCIe device
○ We are specifically writing to the extended 

space, which contains 4096 bytes  as compared 
to the 64-byte basic space

Program Enhancements
● Created an exhaustive script tested each possible 

one-byte value and wrote to each register
○ 4096 extended space registers * 256 possible 

one byte values = 1,048,576 total writes
● Enhanced random fuzzing script to remove 

redundancy
○ Kept track of previously written register-value 

combinations to improve efficiency 
○ Created script that automatically detected 

crashes in the guest system → wrote these 
values to a file such that these registers can be 
skipped in later iterations

Fuzzing Process

I would like to thank Dr. Ajay Joshi for the 
opportunity to conduct this project as part of 
the Integrated Circuits and Systems Group. In 

addition, I would like to thank Chathura 
Rajapaksha for his mentorship throughout the 

project and constant advice and support. 
Finally, I would like to thank the Boston 
University RISE program for the unique 

opportunity to work at BU.

NVME SSD Random Script Exhaustive Script

Writes Performed 864,000 170,231

Crashes/Reboots 0 2

Threat Model
● We assume PCIe devices are 

passed through from host to 
VM, and the IOMMU is turned 
on in passthrough mode

● The attacker has root access in 
VM, and has no control over 
the host system

All crashes are skipped in future iterations. We find 
the cause and minimal reproducer for host crashes, 
and report unknown bugs that cause them.

[1] Koteshwara, S., Kariuki, G., Ohmacht, M., & Crumley, P. (n.d.). Fuzzing 
the PCIe interface of smart devices [Unpublished manuscript], IBM T J 
Watson Research Center.
[2] Wu, Y., Zhang, T., Jung, C., & Lee, D. (n.d.). DevFuzz: Automatic device 
model-guided device driver fuzzing, 
https://www3.cs.stonybrook.edu/~dongyoon/papers/SP-23-DevFuzz.pdf 
[3] Hansbrough, J. (2017, February 9). Fuzzing PCI Express: Security in 
plaintext. Google. 
https://cloud.google.com/blog/products/gcp/fuzzing-pci-express-security-i
n-plaintext 

● After covering just 16.2% of the extended configuration space with the exhaustive script on the NVMe 
SSD device, 2 replicable reboots were detected
○ As such, the script will be ran to perform the remaining writes in the case that more bugs are detected

● Our programs perform efficiently as shown by the graph
○ As the trends continue over time, our graphs become even more efficient due to the higher frequency 

of duplicates as runtime increases
● Register writes and test space calculations were performed considering only cases where crashes were 

caused by one individual write of one byte to a single offset
○ The values of other registers will be taken into account for the full test space in the future
○ Since the PCIe extended configuration space is simply a continuous memory address space, more than 

one byte can be written at a time, and one register can be larger than one byte
○ There will be no way to exhaustively cover this test space in reasonable time

SmartNIC Random Script Exhaustive Script

Writes 
Performed

433,871 1,048,576

Crashes/Reboots 0 1 (unreplicated)

● An additional crash was found when fuzzing 
the NIC, but was not replicated yet

● Two crashes were detected while running the 
exhaustive script on the NVME SSD, on register 
offset 0x297 and 0x299

● The results of fuzzing the NVME storage device 
are summarized below:

Fuzzing Results

Script Coverage

Figure 3: Threat model

Soumil Desai1,2, Chathura Rajapaksha2, Ajay Joshi2

● Modified Random Script (blue) represents 
our script, which has removed duplicate 
values for better efficiency compared to the 
Existing Random Script (green)

● Exhaustive Script has a perfectly linear 
trend, as there are no duplicates because 
numbers are generated serially

Figure 4: Fuzzing process

Figure 5: Differences in test space coverage


