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§ Autism Spectrum Disorder (ASD): heterogenous, 
hard to identify biomarkers for diagnosis

§ Electroencephalography (EEG): valuable tool for 
biomarker identification—non-invasive, high 
temporal resolution, affordable

GOALS

§ Predict ASD from EEG using machine learning tools
§ Explore distributional features across EEG trials
§ Identify important features for ASD diagnosis

EEG head map
(Template from Neuhaus et. al.1)

Subset of EEG signals
(Figure from Biopac)

Group Size Male/Female Age (years)
Autism (ASD) 94 55/39 12.5±2.9
Control (CON) 96 49/47 12.9±2.8

1) DATA1

3) FEATURE EXTRACTION 4) TRAINING AND TESTING
§ Get Power Spectral Density (PSD) at each electrode and frequency 

band using Welch’s estimate {hamming, 512 point}

PSD of Mean EEG (conventional)

Mean and std. deviation of 
band features across trials

2 x 2560 = 5210 features

Mean-EEG Across-trial

§ Four classifiers trained on the two 
standardized feature types separately

1. Logistic regression (LR)
2. Random forest without bootstrap (RF)
3. Kernel-support vector machine (SVM)
4. An artificial neural network (ANN)

§ Stratified 5-fold cross-validation
§ Repeated 5x

§ Evaluation: accuracy, F1 score, precision, 
recall, specificity, AUROC, AUPRC metrics

§ Feature importance: determined by 
magnitude of mean feature weights in 
cross-validation across-trial LR models 

2) PREPROCESSING

Mean, std. deviation, skew, 
& kurtosis of PSD in each 
frequency band

Model Features Accuracy F1 score Precision Recall Specificity AUROC AUPRC
LR Across-trial 0.678±0.083 0.678±0.083 0.674±0.101 0.693±0.108 0.664±0.123 0.748±0.073 0.751±0.086

Mean-EEG 0.608±0.060 0.597±0.088 0.601±0.082 0.604±0.117 0.61±0.085 0.648±0.070 0.678±0.084

RF Across-trial 0.660±0.085 0.646±0.102 0.665±0.112 0.649±0.147 0.681±0.121 0.742±0.082 0.744±0.089

Mean-EEG 0.614±0.068 0.589±0.076 0.626±0.095 0.571±0.109 0.662±0.115 0.672±0.092 0.693±0.088

SVM Across-trial 0.659±0.079 0.656±0.089 0.659±0.101 0.679±0.146 0.654±0.106 0.734±0.087 0.743±0.093

Mean-EEG 0.577±0.064 0.532±0.087 0.608±0.136 0.509±0.161 0.669±0.146 0.608±0.146 0.619±0.102

ANN Across-trial 0.654±0.088 0.682±0.099 0.650±0.108 0.751±0.156 0.590±0.160 0.721±0.095 0.709±0.084

Mean-EEG 0.622±0.079 0.616±0.112 0.600±0.112 0.661±0.160 0.564±0.158 0.651±0.108 0.683±0.098

§ Across-trial

§ Mean-EEG
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REPEATED 5-FOLD CROSS-VALIDATION MODEL PERFORMANCE

Table 1: Metrics from all experiments. Significant differences (p<0.05) from two-sample t-tests between the 
two feature types are highlighted in green. (No significant differences between model choices found.)

Fig 2: Frequency band distribution (left) and across-trial feature distribution 
(right) of the top 5% most important features. P-values from chi-square 
goodness-of-fit tests with the null hypothesis of a uniform distribution.
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P-value = 5.94e-06

REPEATED 5-FOLD CROSS-VALIDATION ACCURACY

DISTRIBUTION OF TOP 5% MOST IMPORTANT FEATURES

Frequency Band Across-Trial Feature Type
P-value = 6.38e-14
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§ Features recording variability across trials are more important
§ Trial-to-trial variability differs between ASD and CON groups2

§ The choice of machine learning model is not significant

§ Beta frequency: highest diagnostic value in all brain regions
§ Occipital and frontal temporal regions: higher diagnostic value across 

multiple frequency bands 

§ Future work: 
§ Incorporate features from task-EEG data
§ Use deep learning for feature extraction

-log10(P-value)
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Fig 3: Topological head plots of significant regions based on two-sample t-tests for the difference 
between ASD and CON in the mean of summed across-trial features adjusted by LR model weights. 

SIGNIFICANTLY DIFFERENT BRAIN REGIONS BETWEEN GROUPS
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PSD of EEG for each trial

Mean, std. deviation, skew, 
& kurtosis of PSD in each 
frequency band

§ Low pass (<100 Hz) and Notch (60Hz) filters
§ Wavelet threshold and bad segment rejection
§ ICA and bad channel rejection1

Two Feature Aggregation Types

Fig 1: Accuracy of all models using the two feature types. 
Across-trial feature models show higher accuracy.

128 x 5 x 4 = 2560 features

# Electrodes

# Frequency bands

# Within-band features


