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Introduction Methods
Background: The Model: Dataset:

e Monolithic 3D (M3D) integration is an emerging technology enabling the stacking of multiple transistor, or ® Decision Tree Regression model e 360 different
active, layers (also called tiers) within one Integrated Circuit (IC) [I] from Scikit Learn workloads

e PACT is a compact thermal simulator developed by PEACLab that can generate accurate temperature data o Default hyperparameters ® Each workload

® Previous work [2] developed a linear regression model to predict on-chip temperatures for the Intel i7 e Four Input Columns: contains a 100x100
6950xExtreme Edition processor o Power Per Node temperature node

e M3D systems face additional thermal issues due to various factors, making thermal management a critical 0 Node Layer grid for each layer
issue [3] © Node Location/Index e Train/test split of

o Temperature readings from sensors 0.75/0.25

e Runtime thermal management provide one way to manage high temperatures

e Output:
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Testing: 0o R72 of Test Set vs Max Depth
® Model was tested with two imputation methods and 10, 20, and 50 temperature readings given |
® Model was also tested with taking away layer input, train/test split of 0.65/0.35, varying max depths, and a new workload 08"
® Null temperature data filled using Lo
o0 Minimum temperature reading given G 0.6
o 7))
o Hybrid approach 05T
m Bottom layer filled with Sklearn iterative imputer < .l °
m Top layer filled with min value B
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Overall: 0.3
® Model is generally more accurate for layer 2 .27 | | | | |
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® Achieved a maximum R”2 score of 0.871, with both min and hybrid imputation, using 20 temperature readings Max Depth
® Takes < | second to generate a prediction for one layer Accuracy vs Decision Tree Max Depth
e Taking away the layer input allows the model to predict layer | of the new workload better for model given layer data
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Predictions from min, |0 temp readings on workload from dataset(right) and min, 10 readings, and no layer model on new workload(left)
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Conclusion References
Summary: [1] K. Dhananjay, P. Shukla,V. F. Pavlidis, A. Coskun and E. Salman, "Monolithic 3D
e Decision Tree Regressor achieved good accuracy for predicting layer 2 temperatures, and decent accuracy for Integrated Circuits: Recent Trends and Future Prospects,” 2021. |
P"ediCting Iayer | temperatures. [2] Knox, C,Yuan, Z, & Coskun, AK. "Machine Learning and Simulation Based
® Both data imputation methods had similar results, with a maximum overall R*2 score of 0.871 Temperature Prediction on High-Performance Processors.” 2022. |
® Increasing the number of temperature inputs to 20 slightly increased accuracy, while 50 temperature readings 13]. P Shukla, A. K. Coskun.V. F. Pavlidis, and E. Salman, “An overview of thermal
and a new workload decreased accuracy challenges and opportunities for monolithic 3D ICs,” 2019. 2.
O The decrease in accuracy could be a result of overfitting, limiting max depth and giving less input columns may
have helped with overfitting
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